Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-07T22:26:19.229Z Has data issue: false hasContentIssue false

Les risques liés aux expositions au tritium sont-ils sous-évalués ?

Published online by Cambridge University Press:  12 June 2008

F. Paquet
Affiliation:
IRSN, Direction scientifique, BP 3, 13115 Saint-Paul-lez-Durance Cedex, France.
H. Métivier
Affiliation:
SFRP, BP 72, 92263 Fontenay-aux-Roses Cedex, France.
Get access

Abstract

Le tritium est un radionucléide dont l’utilisation et la production vont croitre du fait du développement des nouveaux réacteurs à fusion et de la relance des programmes nucléaires dans le monde. La toxicité du tritium est bien connue mais ses effets sanitaires restent délicats à appréhender du fait d’une dosimétrie difficile et du faible nombre de cas de contamination survenus depuis son utilisation. L’estimation des risques liés à son utilisation repose sur les modèles de la CIPR qui permettent de calculer les doses délivrées dans les tissus grâce à un facteur de pondération WR qui tient compte de l’efficacité biologique relative des différents rayonnements. Quelques voix s’élèvent pour réclamer une révision du facteur de pondération utilisé pour les rayonnements bêta du tritium, arguant que celui-ci peut s’incorporer dans l’ADN et donc être plus toxique que les autres radionucléides émetteurs bêta. Une revue des différents travaux menés sur le sujet et publiés dans la littérature montre en réalité que l’efficacité biologique relative du tritium n’est pas très différente de celle des rayonnements gamma, pris comme rayonnements de référence. Ceci plaide pour un maintien du facteur de pondération unitaire actuel, initialement proposé puis réaffirmé récemment par la CIPR.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AGIR (2007) Review of Risks from Tritium, Report of the independent Advisory Group on Ionising Radiation, Documents of the Health Protection Agency, Radiation, Chemical and Environmental Hazards, REC-4. November 2007. ISBN: 978-0-85951-610-5.
Balonov, M.I., Muksinova, K.N., Mushkacheva, G.S. (1993) Tritium radiobiological effects in mammals: review of experiments of the last decade in Russia, Health Phys. 65, 713-726. CrossRef
Barcellos-Hoff, M.H., Brooks, A.L. (2001) Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability, Radiat. Res. 156, 618-627. CrossRef
Belot Y., Roy M., Métivier H. (1996) Le tritium, de l'environnement à l'homme, Collection IPSN, EDP Sciences, les Ulis. ISBN: 2-86883-275-X.
Beral, V., Fraser, P., Carpenter, L., Booth, M., Brown, A., Rose, G. (1988) Mortality of employees of the Atomic Weapons Establishment, 1951-82, Br. Med. J. 297, 757-770. CrossRef
CERRIE (2004) Report of the Committee Examining Radiation Risks of Internal Emitters, Produced by CERRIE, London. ISBN: 0-85951-545-1.
Cristescu, I., Cristescu, I., Doerr, L., Glugla, M., Murdoch, D. (2007) Tritium inventories and tritium safety design principles for the fuel cycle of ITER, Nuclear Fusion 47, S458-S463. CrossRef
Edwards, A.A. (1999) Neutron RBE values and their relationship to judgements in radiological protection, J. Radiol. Prot. 19, 93-105. CrossRef
EGIS (2007) Scientific Issues and Emerging Challenges for Radiological Protection, In NEA report N°6167 (NEA OECD Ed.) pp. 1-119.
Gragtmans, N.J., Myers, D.K., Johnson, J.R., Jones, A.R., Johnson, L.D. (1984) Occurrence of mammary tumors in rats after exposure to tritium beta rays and 200-kVp X rays, Radiat. Res. 99, 636-650. CrossRef
Green, L.M., Dodds, L., Miller, A.B., Tomkins, D.J., Li, J., Escobar, M. (1997) Risk of congenital anomalies in children of parents occupationally exposed to low level ionising radiation, Occup. Environ. Med. 54, 629-635. CrossRef
Grosse, A.V., Johnston, W.M., Wolfgang, R.L., Libby, W.F. (1951) Tritium in Nature, Science 113, 1-2. CrossRef
Grosse, A.V., Kirschenbaum, A.D., Kulp, J.L., Broecker, W.S. (1954) The natural tritium content of atmospheric hydrogen, Phys. Rev. 93, 250-251. CrossRef
Hofer, K.G., Hughes, W.L. (1971) Radiotoxicity of intranuclear tritium, 125 iodine and 131 iodine, Radiat. Res. 47, 94-101. CrossRef
ICRP Publication 60 (1991) 1990 Recommendations of the International Commission on Radiological Protection, Ann. ICRP 21(1-3).
ICRP Publication 103 (2007) The 2007 recommendations of the International Commission on Radiological Protection, Ann. ICRP 37(2-4).
ICRU (1986) The quality factor in radiation protection. ICRU report 40 Bethesda.
Johnson, J.R., Myers, D.K., Jackson, J.S., Dunford, D.W., Gragtmans, N.J., Wyatt, H.M., Jones, A.R., Percy, D.H. (1995) Relative biological effectiveness of tritium for induction of myeloid leukemia in CBA/H mice, Radiat. Res. 144, 82-89. CrossRef
Lambert, B.E. (1969) Cytological damage produced in the mouse testes by tritiated thymidine, tritiated water and X-rays, Health Phys. 17, 547-557. CrossRef
Little, M.P., Lambert, B.E. (2008) Systematic review of experimental studies on the relative biological effectiveness of tritium, Radiat. Environ. Biophys. 47, 71-93. CrossRef
Little, M.P., Wakeford, R. (2008) Systematic review of epidemiological studies of exposure to tritium, J. Radiol. Prot. 28, 9-32. CrossRef
Matsuda, Y., Yamada, T., Tobari, I. (1986) Chromosome aberrations induced by tritiated water or 60Co gamma-rays at early pronuclear stage in mouse eggs, Mutat. Res. 160, 87-93. CrossRef
Müller, W.U., Streffer, C., Molls, M., Glück, L. (1986) Radiotoxicity of 3H-Thymidine and 3H-arginine in pre-implantation mouse embryos in vitro, Radiat. Prot. Dos. 16, 155-158. CrossRef
Pomerantseva, M.D., Balonov, M.I., Ramaiia, L.K., Vilkina, G.A. (1984) Mutagenic action of tritium on the germ cells of male mice. II. The genetic damages in stem spermatogonia induced by tritium oxide and gamma radiation, Genetika 20, 782-787.
Revina, V.S., Voronin, V.S., Lemberg, V.K., Sukhodoev, V.V. (1984) Comparative evaluation of the carcinogenic effects of chronic exposure to tritium oxide and external gamma-radiation, Radiobiologiia 24, 697-700.
Richardson, D.B., Wing, S. (2007) Leukemia mortality among workers at the Savannah River Site, Am. J. Epidemiol. 166, 1015-1022. CrossRef
Rossi, H.H., Zaider, M. (1990) Contribution of neutrons to the biological effects in Hiroshima, Health Phys. 58, 645-647.
Satow Y., Hori H., Lee J.Y. (1989) Teratogenic effect of fission neutron and tritium water on rat embryo, J. Uoeh 11(Suppl), 416-431.
Seyama T., Yamamoto O., Kinomura A., Yokoro K. (1991) Carcinogenic effects of tritiated water (HTO) in mice: in comparison to those of neutrons and gamma-rays, J. Radiat. Res. (Tokyo) 32(Suppl 2), 132-142. CrossRef
Straume, T. (1995) High-energy gamma rays in Hiroshima and Nagasaki: implications for risk and WR, Health Phys. 69, 954-956. CrossRef
Straume, T., Carsten, A.L. (1993) Tritium radiobiology and relative biological effectiveness, Health Phys. 65, 657-672. CrossRef
Streffer, C., van Beuningen, D., Elias, S. (1978) Comparative effects of tritiated water and thymidine on the preimplanted mouse embryo in vitro, Curr. Top. Radiat. Res. Q 12, 182-193.
Ueno A., Furuno-Fukushi I., Matsudaira H. (1989) Cell killing and mutation to 6-thioguanine resistance after exposure to tritiated amino acids and tritiated thymidine in cultured mammalian cells, In S. Okada (Ed.) Tritium Radiobiology and health Physics, Proceedings of the 3rd Japanese-US workshop, Nagoya University, Japan. IPPJ-REV-3, pp. 200-210.
Ujeno, Y. (1983) Relative biological effectiveness (RBE) of tritium beta rays in relation to dose rate, Health Phys. 45, 789-791.
UNSCEAR (1977) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 1977 report to the general assembly, United Nations Publications, New-York.
UNSCEAR (1982) Sources and effects of ionizing radiations. United Nations Scientific Committee on the Effects of Atomic Radiation, 1982 report to the general assembly, United Nations Publications, New-York.
UNSCEAR (1993) Sources and effects of ionizing radiations. United Nations Scientific Committee on the Effects of Atomic Radiation, 1993 report to the general assembly, United Nations Publications, New-York.
Young R., Kerr G. (1995) Reassessment of the atomic bomb radiation dosimetry for Hiroshima and Nagasaki: Report of the joint US-Japan working group, Radiation Effects Research Foundation Hiroshima.
Zablotska, L.B., Ashmore, J.P., Howe, G.R. (2004) Analysis of mortality among Canadian nuclear power industry workers after chronic low-dose exposure to ionizing radiation, Radiat. Res. 161, 633-641. CrossRef
Zhou, X.Y., Dong, J.C., Zhou, S.Y., Chen, J.D., Guo, F.R. (1989) Experimental study on relative biological effectiveness of tritium and risk estimates of genetic damage, Chin. Med. J. (Engl) 102, 872-878.