Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T04:02:30.127Z Has data issue: false hasContentIssue false

A Wiggle-Matched Date for the Copper Age Cemetery at Manerba Del Garda, Northern Italy

Published online by Cambridge University Press:  18 July 2016

Lawrence H Barfield
Affiliation:
Institute of Archaeology and Antiquity, Arts Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. Sadly, Lawrence H Barfield passed away 2 July 2009
Sturt W Manning
Affiliation:
Department of Classics & Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, B-48 Goldwin Smith Hall, Cornell University, Ithaca, New York 14853-3201, USA
Erio Valzolgher*
Affiliation:
Ricerche Archeologiche snc/Archäologische Untersuchungen OHG, via Guglielmo Marconi/Guglielmo-Marconi-Strasse 8, I-39042 Bressanone/Brixen (Bolzano/Bozen), Italy
Thomas F G Higham
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, United Kingdom
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cemetery in the Riparo Valtenesi rockshelter at Manerba del Garda in northern Italy is well known for its wooden burial chambers. These chambers are some of the best sources of evidence for 3rd millennium BC collective burial in Europe. To further refine the absolute dating of burial activity at the site (beyond the approximate data provided by a previous series of routine radiocarbon measurements), a charred construction oak timber was sampled from Chamber 133 for 14C dendro wiggle-matching (DWM). We present the results from the DWM analysis, the first of its kind for the Italian Copper Age as a whole, establishing a terminus post quem for construction of Chamber 133 ∼2955–2872 cal BC.

Type
Calibration, Data Analysis, and Statistical Methods
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Barfield, LH. 1982. Scavi al Riparo Valtenesi, Sasso di Manerba, 1981. Soprintendenza Archeologica della Lombardia. Notiziario 1981:11–3. In Italian.Google Scholar
Barfield, LH. 1983. The Chalcolithic cemetery at Manerba del Garda. Antiquity 57(220):116–23.Google Scholar
Barfield, LH. 1985. Burials and boundaries in Chalcolithic Italy. In: Malone, C, Stoddart, S, editors. Papers in Italian Archaeology IV. The Cambridge Conference. Part II: Prehistory. BAR International Series 244. Oxford: British Archaeological Reports. p 152–76.Google Scholar
Barfield, LH. 1987. Chalcolithic burial ritual in Northern Italy-problems of social interpretation. In: Bergonzi, G, Bietti Sestieri, AM, Cazzella, A, editors. Prospettive storico-antropologiche in archeologia preistorica. Atti del Convegno (Rome, 4–6 January 1986). Quaderni di Dialoghi di Archeologia 3. Rome: Edizioni Quasar. p 241–8.Google Scholar
Barfield, LH. 1994. The Iceman reviewed. Antiquity 68(258):1026.Google Scholar
Barfield, LH. 1995. Riparo Valtenesi, Manerba del Garda. In: Hedges, REM, Housley, RA, Bronk Ramsey, C, van Klinken, GJ. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 19. Archaeometry 37(1):208–9.Google Scholar
Barfield, LH. 1998. L'Italie septentrionale–Grottes et abris funéraires. Autres types de sepultures collectives. In: Guilaine, J, editor. Atlas du Néolithique européen. 2A: L'Europe occidentale. Etudes et Recherches Archéologiques de l'Université de Liège (ERAUL) 46. Liège: Université de Liège. Service de Préhistoire. p 266–9. In French.Google Scholar
Barfield, LH. 1999. Copper age pottery from the Riparo Valtenesi, Manerba del Garda. In: Preistoria e Protostoria del Trentino-Alto Adige/Südtirol. XXXIII Riunione Scientifica dell'Istituto Italiano di Preistoria e Protostoria in ricordo di Bernardino Bagolini (Trento, 21–24 October 1997). Preistoria Alpina 35:5565.Google Scholar
Barfield, LH. 2004. The use of wood in the Copper Age funerary monuments at Manerba del Garda and its use in contemporary ritual monuments. In: Casini, S, Fossati, AE, editors. Le pietre degli dei. Statue-stele dell'età del Rame in Europa. Lo stato della ricerca. Atti del Congresso Internazionale (Brescia, 16–18 September 2004). Notizie Archeologiche Bergomensi 12:3948.Google Scholar
Barfield, LH, editor. 2007a. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. 593 p.Google Scholar
Barfield, LH. 2007b. The Northern Area and the Northern Chambers N27 to N38. In: Barfield, LH, editor. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. p 44122.Google Scholar
Barfield, LH. 2007c. Copper Age pottery. In: Barfield, LH, editor. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. p 159216.Google Scholar
Barfield, LH. 2007d. Discussion of the Copper Age cemetery. In: Barfield, LH, editor. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. p 431–59.Google Scholar
Barfield, LH, Kuniholm, PI. 2007. Radiocarbon dating and the absolute chronology of the cemetery. In: Barfield, LH, editor. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. p 419–27.Google Scholar
Barfield, LH, Mallegni, F, Lippi, B, Chesterman, J. 2007. Human remains. In: Barfield, LH, editor. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. p 335–71.Google Scholar
Baroni, C. 2007. Geology and geomorphology of Lake Garda and the Manerba promontory. In: Barfield, LH, editor. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. p 501–17.Google Scholar
Bayliss, A, Tyers, I. 2004. Interpreting radiocarbon dates using evidence from tree rings. Radiocarbon 46(2):957–64.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Bronk Ramsey, C. 2010. OxCal 4.1 [software and online manual]. Oxford Radiocarbon Accelerator Unit. URL: https://c14.arch.ox.ac.uk/oxcal/OxCal.html.Google Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004a. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.Google Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004b. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155–63.Google Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381–9.Google Scholar
Colledge, S. 2007. The Copper Age carbonised plant remains. In: Barfield, LH, editor. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. p 391413.Google Scholar
Coplen, TB. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry 66(2):273–6.Google Scholar
Dee, M, Bronk Ramsey, C. 2000. Refinement of graphite target production at ORAU. Nuclear Instruments and Methods in Physics Research B 172(1–4):449–53.Google Scholar
de Marinis, RC. 1997. The eneolithic cemetery of Remedello Sotto (BS) and the relative and absolute chronology of the Copper Age in Northern Italy. Notizie Archeologiche Bergomensi 5:3351.Google Scholar
Galimberti, M, Bronk Ramsey, C, Manning, SW. 2004. Wiggle-match dating of tree-ring sequences. Radiocarbon 46(2):917–24.Google Scholar
Haneca, K, Čufar, K, Beeckman, H. 2009. Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archaeological Science 36(1):111.Google Scholar
Hedges, REM, Law, IA, Bronk, CR, Housley, RA. 1989. The Oxford accelerator mass spectrometry facility: technical developments in routine dating. Archaeometry 31(2):99113.Google Scholar
Kromer, B. 2009. Radiocarbon and dendrochronology. Dendrochronologia 27(1):15–9.CrossRefGoogle Scholar
Law, IA, Hedges, REM. 1989. A semi-automated bone pretreatment system and the pretreatment of older and contaminated samples. Radiocarbon 31(3):247–53.Google Scholar
Mariotti, A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303(5919):685–7.Google Scholar
Martinelli, N. 2007. Dendrocronologia delle palafitte dell'area gardesana: situazione delle ricerche e prospettive. In: Morandini, F, Volonté, M, editors. Contributi di archeologia in memoria di Mario Mirabella Roberti. Atti del XVI Convegno Archeologico Benacense (Cavriana, 15–16 October 2005). Annali Benacensi XIII–XIV:103–20. In Italian.Google Scholar
Miles, DH. 2005. New developments in the interpretation of dendrochronology as applied to oak building timbers [unpublished PhD dissertation]. University of Oxford.Google Scholar
Nisbet, R, Barfield, LH. 2007. Charcoals, grass micro-remains and thread analysis. In: Barfield, LH, editor. Excavations in the Riparo Valtenesi, Manerba, 1976–1994. Florence: Istituto Italiano di Preistoria e Protostoria. p 414–8.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Shotton, FW, Williams, REG. 1973. Birmingham University radiocarbon dates VII. Radiocarbon 15(3):451–68.Google Scholar
Shotton, FW, Blundell, DJ, Williams, REG. 1969. Birmingham University radiocarbon dates III. Radiocarbon 11(2):263–70.CrossRefGoogle Scholar
Shotton, FW, Williams, REG, Johnson, AS. 1974. Birmingham University radiocarbon dates VIII. Radiocarbon 16(3):285303.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.Google Scholar