Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T01:10:41.909Z Has data issue: false hasContentIssue false

Using Bulk Soil Radiocarbon Measurements to Estimate Soil Organic Matter Turnover Times: Implications for Atmospheric CO2 Levels

Published online by Cambridge University Press:  18 July 2016

Kevin G. Harrison*
Affiliation:
Phytotron, Duke University, Box 90340, Durham, North Carolina 27708-0340 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although soil contains about three times the amount of carbon present in the preindustrial atmosphere, determining how perturbations (e.g., changing land use, CO2 fertilization, changing climate and anthropogenic nitrogen deposition) alter soil carbon storage and influence atmospheric CO2 levels has proved elusive. Not knowing the soil carbon turnover times causes part of this uncertainty. I outline a strategy for using radiocarbon measurements to estimate soil organic matter turnover times and inventories in native soil. The resulting estimates of carbon exchange produce reasonable agreement with measurements of CO2 fluxes from soil. Furthermore, derivatives of the model are used to explore soil carbon dynamics of cultivated and recovering soil. Because the models can reproduce observed soil 14C measurements in native, cultivated, and recovering ecosystems (i.e., the underlying assumptions appear reasonable), the native model was modified to estimate the potential rate of additional carbon storage because of CO2 fertilization. This process may account for 45–65% of the “missing CO2 sink.”

Type
14C and Soil Dynamics: Special Section
Copyright
Copyright © The American Journal of Science 

References

Balesdent, J., Wagner, G. H. and Mariotti, A. 1988 Soil organic matter turnover in long-term field experiments as revealed by 13C natural abundance. Soil Science Society of America Journal 52:118–124.Google Scholar
Bazzaz, F. A. and Fajer, E. D. 1992 Plant life in a CO2 - rich world. Scientific American 266(1): 6874.Google Scholar
Becker-Heidmann, P. (ms.) 1989 Die Teifenfunktionen der naturlichen Kohlenstoff-Isotopengehalte von voll-standig dunnschichtweise beprobten Parabraunerde und ihre Relation zur Dynamic der organischen Substanz in diesen Boden. Ph. D. dissertation, Hamburg University.Google Scholar
Becker-Heidmann, P., Liang-wu, L. and Scharpenseel, H. W. 1988 Radiocarbon dating of organic matter fractions of a Chinese mollisol. Zeitschrift für Pflanzenernahrung und Bodenkunde 151: 3739.Google Scholar
Campbell, C. A., Paul, E. A., Rennie, D. A. and McCallum, D. A. 1967 Applicability of the carbon-dating method of analysis to soil humus studies. Soil Science 104(3): 217223.Google Scholar
Davidson, E. A. and Ackerman, I. L. 1993 Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20: 161193.Google Scholar
Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C. and Wisniewski, J. 1994 Carbon pools and flux of global forest ecosystems. Science 263: 185190.Google Scholar
Eswaran, H., Den Berg, E. V. and Reich, P. 1993 Organic carbon in soils of the world. Soil Science Society of America Journal 57: 192194.Google Scholar
Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J. and Vera, R. R. 1994 Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371: 236238.Google Scholar
Goh, K. M, Rafter, T. A., Stout, J. D. and Walker, T. W. 1976 Accumulation of soil organic matter and its carbon isotope content in a chronosequence of soils developed on aeolian sand in New Zealand. Journal of Soil Science 27: 89100.Google Scholar
Goh, K. M., Stout, J. D. and O'Brien, J. 1984 The significance of fractionation dating the age and turnover of soil organic matter. New Zealand Journal of Soil Science 35: 6972.Google Scholar
Goh, K. M., Stout, J. D. and Rafter, T. A. 1977 Radiocarbon enrichment of soil organic fractions in New Zealand soils. Soil Science 123(6): 385390.CrossRefGoogle Scholar
Harrison, K. G., Broecker, W. S. and Bonani, G. 1993a A strategy for estimating the impact of CO2 fertilization on soil carbon storage. Global Biogeochemical Cycles 7(1): 6980.Google Scholar
Harrison, K. G., Broecker, W. S. and Bonani, G. 1993b The effect of changing land use on soil radiocarbon. Science 262: 725726.Google Scholar
Harrison, K. G. (ms.) 1994 The impact of CO2 fertilization, changing land use, and N-deposition on soil carbon storage. Ph. D. dissertation, Columbia University.Google Scholar
Harrison, K. G., Post, W. M. and Richter, D. D. 1995 Soil carbon turnover in a recovering temperate forest. Global Biogeochemical Cycles 9(4): 449454.Google Scholar
Hsieh, Y.-P. 1992 Pool size and mean age of stable soil organic carbon in cropland. Soil Science Society of America Journal 56: 460464.Google Scholar
Hsieh, Y.-P. 1993 Radiocarbon signatures of turnover rates in active soil organic carbon pools. Soil Science Society of America Journal 57: 10201022.CrossRefGoogle Scholar
Jenkinson, D. S. 1990 The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London B329: 361368.Google Scholar
Jenkinson, D. S. and Raynor, J. J. 1977 The turnover of organic matter in some of the Rothamsted classical experiments. Soil Science 123: 298305.CrossRefGoogle Scholar
Martel, Y. A. and Paul, E. A. 1974a Effects of cultivation on the organic matter of grassland soils as determined by fractionation and radiocarbon dating. Canadian Journal of Soil Science 54: 419426.Google Scholar
Martel, Y. A. and Paul, E. A. 1974b Use of radiocarbon dating of organic matter in the study of soil genesis. Soil Science Society of America Proceedings 38: 501506.Google Scholar
Nepstad, D. C., de Carvalho, D. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., da Silva, E. D., Stone, T. A., Trumbore, S. E. and Vieira, S. 1994 The role of deep roots in the hydrological and carbon cycles of Amazon forests and pastures. Nature 372:666–669.CrossRefGoogle Scholar
Norby, R. J., Gunderson, C. A., Wullschleger, S. D., O'Neill, E. G. and McCracken, M. K. 1992 Productivity and compensatory responses of yellow-poplar trees in elevated CO2 . Nature 357: 322324.Google Scholar
O'Brien, B. J. 1984 Soil organic carbon fluxes and turnover rates estimated from radiocarbon enrichments. Soil Biology and Biochemistry 16(2): 115120.Google Scholar
O'Brien, B. J. 1986 The use of natural and anthropogenic 14C to in vestigate the dynamics of soil organic carbon. In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 358–362.Google Scholar
O'Brien, B. J. and Stout, J. D. 1978 Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology and Biochemistry 10: 309317.Google Scholar
Parton, W. J., Cole, C. V., Stewart, J. W. B., Ojima, D. S. and Schimel, D. S. 1989 Stimulating regional patterns of soil, C, N and P dynamics in the U.S. central grass lands region. In Clarholm, M. and Bergström, L., eds., Ecology of Arable Land. Norwell, Massachusetts, Kluwer Academic Publishers: 99108.Google Scholar
Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. 1987 Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Science Society of America Journal 51: 11731179.Google Scholar
Parton, W. J., Scurlock, M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, J.-C., Seastedt, T., Moya, E. G., Kamnalrut, A. and Kinyamario, J. I. 1993 Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7(4): 785809.Google Scholar
Paul, E. A., Campbell, C. A., Rennie, D. A. and McCallum, K. J. 1964 Investigations of the dynamics of soil humus utilizing carbon dating techniques. In Transactions of the 8th International Soil Science Society Conference, Bucharest, Romania. Bucharest, Publishing House of the Academy of the Socialist Republic of Romania: 201–208.Google Scholar
Post, W. M., Emanuel, W. R., Zinke, P. J. and Stangenberger, A. G. 1982 Soil carbon pools and world life zones. Nature 298:156–159.Google Scholar
Post, W. M. and Mann, L. K. 1990 Changes in soil organic carbon and nitrogen as a result of cultivation. In Bowman, A. F., ed., Soils and the Greenhouse Effect, New York, John Wiley & Sons: 401407.Google Scholar
Raich, J. W. and Schlesinger, W. H. 1992 The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 8189.CrossRefGoogle Scholar
Richter, D. D., Markewitz, D., Wells, C. G., Allen, H. L., Dunscombe, J., Harrison, K., Heine, P. R., Stuanes, A., Urrego, B. and Bonani, G. 1995 Carbon cycling in a Loblolly pine forest: Implications for the missing carbon sink and for the concept of soil. In MacFee, W., ed., Proceedings of the Eighth North American Forest Soils Conference, University of Florida, Gainesville: 233251.Google Scholar
Richter, D. D., Markewitz, D., Wells, C. G., Allen, H. L., April, R., Heine, P. R. and Urrego, B. 1994 Soil chemical change during three decades in an old-field loblolly pine ecosystem. Ecology 75(5): 14631473.Google Scholar
Scharpenseel, H. W. and Becker-Heidmann, P. 1989 Shifts in 14C patterns of soil profiles due to bomb carbon, including effects of morphogenetic and turbation processes. In Long, A., Kra, R. S. and Srdoč, D., eds, Proceedings of the 13th International 14C Conference. Radiocarbon 31(3):627–636.Google Scholar
Scharpenseel, H. W., Ronzani, C. and Pietig, F. 1968 Comparative age determinations on different humic-matter fractions. In Isotopes and Radiation in Soil Organic Matter Studies. Proceedings of the Symposium, July 1968, Vienna. Vienna, International Atomic Energy Commission: 67–74.Google Scholar
Scharpenseel, H. W., Tamers, M. A. and Pietig, F. 1968 Altersbestimmung von Boden durch die Radiokohlen-stoffdatierungsmethode. Zeitschrift für Pflanzenernahrung und Bodenkunde 119: 3452.Google Scholar
Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J. and Townsend, A. R. 1994 Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles 8: 279–273.Google Scholar
Schlesinger, W. H. 1977 Carbon Balance in Terrestrial Detritus. Annual Review of Ecologicy and Systematics 8: 5181.Google Scholar
Schlesinger, W. H. 1986 Changes in soil carbon storage and associated properties with disturbance and recovery. In Trabalka, J. R. and Reichle, D. E., eds., The Changing Carbon Cycle: A Global Analysis. New York: Springer-Verlag: 194220.Google Scholar
Schlesinger, W. H. 1991 Biogeochemistry: An Analysis of Global Change. New York, Academic Press: 443 p.Google Scholar
Strain, B. R. and Cure, J. D. 1985 Direct Effects of Increasing Carbon Dioxide on Vegetation. DOE/ER-0238.Google Scholar
Trumbore, S. E. 1993 Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurement. Global Biogeochemical Cycles 7(2): 275290.Google Scholar
Trumbore, S. E., Bonani, G., and Wölfli, W. 1990 The rates of carbon cycling in several soils from AMS C-14 measurements of fractionated soil organic matter. In Bouwman, A. F., ed., Soils and the Greenhouse Effect. New York, John Wiley & Sons: 407414.Google Scholar
Trumbore, S. E., Vogel, J. S. and Southon, J. R. 1989 AMS 14C measurements of fractionated soil organic matter. In Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 644654.Google Scholar
Tsutsuki, K., Suzuki, C., Kuwatsuka, S., Becker-Heidmann, P. and Scharpenseel, H. W. 1988 Investigation of the stabilization of the humus in mollisols. Zeitschrift für Pflanzenernahrung und Bodenkunde 151: 8790.Google Scholar
Vogel, J. C. 1970 Carbon-14 dating of groundwater. In Isotope Hydrology 1970. Vienna, International Atomic Energy Agency: 225–237.Google Scholar
Warneck, P. 1988 Chemistry of the Natural Atmosphere. Orlando, Florida, Academic Press: 775 p.Google Scholar
Zak, D. R., Pregitzer, K. S., Curtis, P. S., Teeri, J. A., Fogel, R. and Randlett, D. L. 1993 Elevated atmospheric CO2 feedback between carbon and nitrogen cycles. Plant and Soil 151: 105117.Google Scholar