Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T21:27:38.409Z Has data issue: false hasContentIssue false

Unravelling Quasi-Continuous 14C Profiles by Laser Ablation AMS

Published online by Cambridge University Press:  09 December 2019

C Yeman*
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, HPK, 8093Zurich, Switzerland
M Christl
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, HPK, 8093Zurich, Switzerland
B Hattendorf
Affiliation:
Laboratory of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI, 8093Zurich, Switzerland
L Wacker
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, HPK, 8093Zurich, Switzerland
C Welte
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, HPK, 8093Zurich, Switzerland
N Brehm
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, HPK, 8093Zurich, Switzerland
H-A Synal
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, HPK, 8093Zurich, Switzerland
*
*Corresponding author. Email: [email protected].

Abstract

Laser ablation (LA) accelerator mass spectrometry (AMS) is a novel method for rapid online radiocarbon (14C) analysis of carbonates. The quasi-continuous 14C profiles obtained with this technique demand a customized data evaluation protocol to relate the acquired 14C data to the analyzed sample. We take into account the mixing effects due to the minimal counting (integration) time of the AMS, the finite width of the laser beam and the gas washout of the ablation volume. Thereby we mathematically describe our LA setup with a system function that acts on the produced CO/CO2 (COX) from the sample resulting in a mixing of the 14C profiles obtained by AMS analysis. Furthermore, we analyze the long-term target memory effect in the gas ion source and establish a routine for correction. The correction routine is tested with a stalagmite comprising a growth stop that is analyzed at different scanning velocities indicating that only the slow scanning velocity can provide the necessary resolution to determine the width of the growth stop of 365 μm.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, AH, Yeman, C, Welte, C, Hattendorf, B, Wacker, L, Christl, M. 2019. Laser ablation–accelerator mass spectrometry reveals complete bomb 14C signal in an otolith with confirmation of 60-year longevity for red snapper (Lutjanus campechanus). Marine and Freshwater Research. doi: 10.1071/MF18265.CrossRefGoogle Scholar
Bleiner, D, Belloni, F, Doria, D, Lorusso, A, Nassisi, V. 2005. Overcoming pulse mixing and signal tailing in laser ablation inductively coupled plasma mass spectrometry depth profiling. Journal of Analytical Atomic Spectrometry 20(12):13371343.CrossRefGoogle Scholar
Bronk Ramsey, C, Hedges, REM. 1987. A gas ion source for radiocarbon dating. Nuclear Instruments and Methods in Physics Research B 29(1):4549.CrossRefGoogle Scholar
Fahrni, SM, Wacker, L, Synal, H-A, Szidat, S. 2013. Improving a gas ion source for 14C AMS. Nuclear Instruments and Methods in Physics Research B 294:320327.Google Scholar
Genty, D, Massault, M. 1997. Bomb 14C recorded in laminated speleothems: Calculation of dead carbon proportion. Radiocarbon 39(1):3348.CrossRefGoogle Scholar
Mangini, A, Lomitschka, M, Eichstädter, R, Frank, N, Vogler, S, Bonani, G, Hajdas, I, Patzold, J. 1998. Coral provides way to age deep water. Nature 392(6674):347348.CrossRefGoogle Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304.Google Scholar
Ruff, M, Wacker, L, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S. 2007. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49(2):307314.CrossRefGoogle Scholar
Stout, VL, Gibbons, MD. 1955. Gettering of gas by titanium. Journal of Applied Physics 26(12):14881492.Google Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
Vlasyuk, RZ, Kurovskij, VY, Lyapunov, VP, Radomysel’skij, ID. 1986. Interaction of titanium and vanadium with carbon dioxide under heating. Poroshkovaya Metallurgiya (Kiev) 25(1):5457.Google Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Němec, M, Ruff, M, Suter, M, Synal, H-A, Vockenhuber, C. 2010a. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52(2):252262.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, H-A. 2010b. Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7):976979.CrossRefGoogle Scholar
Wacker, L, Fahrni, SM, Hajdas, I, Molnar, M, Synal, H-A, Szidat, S, Zhang, YL. 2013. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research B 294:315319.CrossRefGoogle Scholar
Welte, C, Wacker, L, Hattendorf, B, Christl, M, Fohlmeister, J, Breitenbach, SFM, Robinson, LF, Andrews, AH, Freiwald, A, Farmer, JR, Yeman, C, Synal, H-A, Günther, D. 2016a. Laser ablation – accelerator mass spectrometry: an approach for rapid radiocarbon analyses of carbonate archives at high spatial resolution. Anal Chem. 88(17):85708576.CrossRefGoogle ScholarPubMed
Welte, C, Wacker, L, Hattendorf, B, Christl, M, Koch, J, Synal, H-A, Günther, D. 2016b. Novel laser ablation sampling device for the rapid radiocarbon analysis of carbonate samples by accelerator mass spectrometry. Radiocarbon 58(2):419435.CrossRefGoogle Scholar
Welte, C, Wacker, L, Hattendorf, B, Christl, M, Koch, J, Yeman, C, F. M. Breitenbach, S, Synal, H-A, Günther, D. 2017. Optimizing the analyte introduction for 14C laser ablation-AMS. Journal of Analytical Atomic Spectrometry 32(9):18131819.CrossRefGoogle Scholar
Xiaodan, Z, Kaixue, H, Mei, L. 2016. The deconvolution algorithm of incremental wiener filtering based on pseudo-random sequences. 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an. p. 12361239. doi: 10.1109/IMCEC.2016.7867408.Google Scholar
Supplementary material: File

Yeman et al. supplementary material

Yeman et al. supplementary material

Download Yeman et al. supplementary material(File)
File 241.8 KB