Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T02:42:55.524Z Has data issue: false hasContentIssue false

A Tree-Ring Based Late Summer Temperature Reconstruction (AD 1675–1980) for the Northeastern Mediterranean

Published online by Cambridge University Press:  09 February 2016

Valerie Trouet*
Affiliation:
Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell Street, Tucson, AZ 85721, USA
*
Corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article presents a late summer temperature reconstruction (AD 1675–1980) for the northeastern Mediterranean (NEMED) that is based on a compilation of maximum latewood density tree-ring data from 21 high-elevation sites. This study applied a novel approach by combining individual series from all sites into one NEMED master chronology. This approach retains only the series with a strong and temporally robust common signal and it improves reconstruction length. It further improved the regional character of the reconstruction by using as a target averaged gridded instrumental temperature data from a broad NEMED region (38–45°N, 15–25°E). Cold (e.g. 1740) and warm (e.g. 1945) extreme years and decades in the reconstruction correspond to regional instrumental and reconstructed temperature records. Some extreme periods (e.g. cold 1810s) reflect European-wide or global-scale climate conditions and can be explained by volcanic and solar forcing. Other extremes are strictly regional in scope. For example, 1976 was the coldest NEMED summer over the last 350 years, but was anomalously dry and hot in northwestern Europe and is a strong manifestation of the summer North Atlantic Oscillation (sNAO). The regional NEMED summer reconstruction thus contributes to an improved understanding of regional (e.g. sNAO) vs. global-scale (i.e. external) drivers of past climate variability.

Type
Articles
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Akkemik, U., and Aras, A., 2005. Reconstruction (1689–1994 AD) of April-August precipitation in the southern part of central Turkey. International Journal of Climatology 25(4):537548.Google Scholar
Alcamo, J., Florke, M., and Marker, M., 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal-Journal des Sciences Hydrologiques 52(2):247275.Google Scholar
Alexandrov, V., Schneider, M., Koleva, E., and Moisselin, J. M., 2004. Climate variability and change in Bulgaria during the 20th century. Theoretical and Applied Climatology 79(3–4):133149.CrossRefGoogle Scholar
Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R., Carrer, M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M., Urbinati, C., Bouriaud, O., Ciais, P., and Frank, D., 2013. Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography 22(6):706717.Google Scholar
Bard, E., Raisbeck, G., Yiou, F., and Jouzel, J., 2000. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52(3):985992.Google Scholar
Barriendos, M., and Rodrigo, F. S., 2006. Study of historical flood events on Spanish rivers using documentary data. Hydrological Sciences Journal-Journal des Sciences Hydrologiques 51(5):765783.Google Scholar
Bartolini, G., di Stefano, V., Maracchi, G., and Orlandini, S., 2012. Mediterranean warming is especially due to summer season. Evidences from Tuscany (central Italy). Theoretical and Applied Climatology 107(1–2):279295.Google Scholar
Böhm, R., Jones, P. D., Hiebl, J., Frank, D., Brunetti, M., and Maugeri, M., 2010. The early instrumental warm-bias: A solution for long central European temperature series 1760–2007. Climatic Change 101(1–2):4167.Google Scholar
Briffa, K. R., Jones, P. D., and Schweingruber, F. H., 1992. Tree-ring density reconstructions of summer temperature patterns across western North America since 1600. Journal of Climate 5(7):735754.Google Scholar
Briffa, K. R., Jones, P. D., and Hulme, M., 1994. Summer moisture variability across Europe, 1892–1991 – An analysis based on the Palmer Drought Severity Index. International Journal of Climatology 14(5):475506.Google Scholar
Briffa, K. R., Jones, P. D., Schweingruber, F. H., and Osborn, T. J., 1998. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393(6684):450455.Google Scholar
Büntgen, U., Frank, D. C., Nievergelt, D., and Esper, J., 2006. Summer temperature variations in the European Alps, AD 755–2004. Journal of Climate 19(21): 56065623.CrossRefGoogle Scholar
Büntgen, U., Frank, D., Grudd, H., and Esper, J., 2008. Long-term summer temperature variations in the Pyrenees. Climate Dynamics 31(6):615631.Google Scholar
Büntgen, U., Frank, D., Trouet, V., and Esper, J., 2010a. Diverse climate sensitivity of Mediterranean tree-ring width and density. Trees - Structure and Function 24(2):261273.Google Scholar
Büntgen, U., Franke, J., Frank, D., Wilson, R., Gonzalez-Rouco, F. J., and Esper, J., 2010b. Assessing the spatial signature of European climate reconstructions. Climate Research 41(2):125130.CrossRefGoogle Scholar
Camuffo, D., Bertolin, C., Barriendos, M., Dominguez-Castro, F., Cocheo, C., Enzi, S., Sghedoni, M., della Valle, A., Garnier, E., Alcoforado, M. J., Xoplaki, E., Luterbacher, J., Diodato, N., Maugeri, M., Nunes, M. F., and Rodriguez, R., 2010. 500-year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Climatic Change 101(1–2):169199.Google Scholar
Chang, H., Knight, C. G., Staneva, M. P., and Kostov, D., 2002. Water resource impacts of climate change in southwestern Bulgaria. GeoJournal 57:159168.Google Scholar
Chenoweth, J., Hadjinicolaou, P., Bruggeman, A., Lelieveld, J., Levin, Z., Lange, M. A., Xoplaki, E., and Hadjikakou, M., 2011. Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resources Research 47:W06506, doi:10.1029/2010WR010269.Google Scholar
Cook, E. R., 1985. A Time-Series Analysis Approach to Tree-Ring Standardization. Ph.D. thesis, University of Arizona; 171 pp.Google Scholar
Cook, E. R., and Peters, K., 1981. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41:4553.Google Scholar
Cook, E. R., and Peters, K., 1997. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7(3):361370.Google Scholar
Cook, E. R., Briffa, K. R., and Jones, P. D., 1994. Spatial regression methods in dendroclimatology – A review and comparison of 2 techniques. International Journal of Climatology 14(4):379402.Google Scholar
Csernus-Molnár, I., Kiss, A., and Pócsik, E., 2014. 18th-century daily measurements and weather observations in the SE-Carpathian Basin: A preliminary analysis of the Timişoara series (1780–1803). Journal of Environmental Geography 7(1–2):19.CrossRefGoogle Scholar
Dai, J., Mosley-Thompson, E., and Thompson, L. G., 1991. Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora. Journal of Geophysical Research: Atmospheres 96(D9):17,36117,366.CrossRefGoogle Scholar
Deslauriers, A., Rossi, S., Anfodillo, T., and Saracino, A., 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology 28(6):863871.Google Scholar
Dickson, D., 1997. Arctic Ireland: The Extraordinary Story of the Great Frost and Forgotten Famine of 1740–1741. White Row Press, Belfast, UK.Google Scholar
Diffenbaugh, N. S., Pal, J. S., Giorgi, F., and Gao, X. J., 2007. Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters 34(11):L11706, doi:10.1029/2007gl030000.Google Scholar
Dominguez-Castro, F., Santisteban, J. I., Barriendos, M., and Mediavilla, R., 2008. Reconstruction of drought episodes for central Spain from rogation ceremonies recorded at the Toledo Cathedral from 1506 to 1900: A methodological approach. Global and Planetary Change 63(2–3):230242.Google Scholar
Eddy, J., 1976. The Maunder minimum. Science 192(4245):11891202.Google Scholar
Engler, S., Luterbacher, J., Mauelshagen, F., and Werner, J., 2013. The Irish famine of 1740–1741: Causes and effects. Climate of the Past Discussions 9(1):11611179.Google Scholar
Esper, J., Büntgen, U., Frank, D., Nievergelt, D., Treydte, K., and Verstege, A., 2006. Multiple tree-ring parameters from Atlas cedar (Morocco) and their climatic signal. Tree Rings in Archaeology, Climatology, and Ecology (TRACE) 4:4655.Google Scholar
Esper, J., Frank, D., Buntgen, U., Verstege, A., Luterbacher, J., and Xoplaki, E., 2007. Long-term drought severity variations in Morocco. Geophysical Research Letters 34(17):L17702, doi:10.1029/2007gl030844.Google Scholar
Felis, T., and Rimbu, N., 2010. Mediterranean climate variability documented in oxygen isotope records from northern Red Sea corals–A review. Global and Planetary Change 71(3–4):232241.Google Scholar
Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and Hurrell, J. W., 2009. The summer North Atlantic Oscillation: Past, present, and future. Journal of Climate 22(5):10821103.Google Scholar
Founda, D., and Giannakopoulos, C., 2009. The exceptionally hot summer of 2007 in Athens, Greece – A typical summer in the future climate? Global and Planetary Change 67(3–4):227236.CrossRefGoogle Scholar
Founda, D., Papadopoulos, K. H., Petrakis, M., Giannakopoulos, C., and Good, P., 2004. Analysis of mean, maximum, and minimum temperature in Athens from 1897 to 2001 with emphasis on the last decade: Trends, warm events, and cold events. Global and Planetary Change 44(1–4):2738.CrossRefGoogle Scholar
Frank, D. C., Esper, J., Raible, C. C., Büntgen, U., Trouet, V., Stocker, B., and Joos, F., 2010. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463(7280):527530.Google Scholar
Franke, J., Fidel Gonzalez-Rouco, J., Frank, D., and Graham, N. E., 2011. 200 years of European temperature variability: Insights from and tests of the proxy surrogate reconstruction analog method. Climate Dynamics 37(1–2):133150.CrossRefGoogle Scholar
Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., and Goodess, C. M., 2009. Climatic changes and associated impacts in the Mediterranean resulting from a 2 degrees C global warming. Global and Planetary Change 68(3):209224.CrossRefGoogle Scholar
Gibelin, A. L., and Deque, M., 2003. Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Climate Dynamics 20(4):327339.Google Scholar
Giles, B. D., and Flocas, A. A., 1984. Air-temperature variations in Greece. 1. Persistence, trend, and fluctuations. Journal of Climatology 4(5):531539.Google Scholar
Giorgi, F., 2006. Climate change hot-spots. Geophysical Research Letters 33(8):L08707, doi:10.1029/2006gl025734.CrossRefGoogle Scholar
Gricar, J., Cufar, K., Oven, P., and Schmitt, U., 2005. Differentiation of terminal latewood tracheids in silver fir during autumn. Annals of Botany 95(6):959965.CrossRefGoogle ScholarPubMed
Grissino-Mayer, H. D., 2001. Crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 57(2):205221.Google Scholar
Grissino-Mayer, H. D., and Fritts, H. C., 1997. The International Tree-Ring Data Bank: An enhanced global database serving the global scientific community. Holocene 7(2):235238.Google Scholar
Hegerl, G. C., Crowley, T. J., Hyde, W. T., and Frame, D. J., 2006. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440(7087):10291032.Google Scholar
Hertig, E., Seubert, S., Paxian, A., Vogt, G., Paeth, H., and Jacobeit, J., 2013. Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: Statistical assessments for the Mediterranean area. Theoretical and Applied Climatology 111(1–2):120.Google Scholar
IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge.Google Scholar
Jones, P. D., and Briffa, K. R., 2006. Unusual climate in Northwest Europe during the period 1730 to 1745 based on instrumental and documentary data. Climatic Change 79(3–4):361379.Google Scholar
Jones, P. D., and Conway, D., 1997. Precipitation in the British Isles: An analysis of area-average data updated to 1995. International Journal of Climatology 17(4):427438.3.0.CO;2-Q>CrossRefGoogle Scholar
Jones, P. D., Osborn, T. J., and Briffa, K. R., 1997. Estimating sampling errors in large-scale temperature averages. Journal of Climate 10(10):25482568.Google Scholar
Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B. M., Luterbacher, J., Wahl, E. R., Zwiers, F. W., Mann, M. E., Schmidt, G. A., Ammann, C. M., Buckley, B. M., Cobb, K. M., Esper, J., Goosse, H., Graham, N., Jansen, E., Kiefer, T., Kull, C., Kuettel, M., Mosley-Thompson, E., Overpeck, J. T., Riedwyl, N., Schulz, M., Tudhope, A. W., Villalba, R., Wanner, H., Wolff, E., and Xoplaki, E., 2009. High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene 19(1):349.Google Scholar
Kern, Z., and Popa, I., 2009. Assessing temperature signal in X-ray densitometric data of Norway spruce and the earliest instrumental record from the southern Carpathians. Journal of Environmental Geography 2(3–4):1522.Google Scholar
Kiss, A., Wilson, R., and Bariska, I., 2011. An experimental 392-year documentary-based multi-proxy (vine and grain) reconstruction of May-July temperatures for Kǒzeg, West-Hungary. International Journal of Biometeorology 55(4):595611.Google Scholar
Klesse, S., Ziehmer, M., Trouet, V., and Frank, D. C., 2014. Synoptic drivers of 400 years of summer temperature and precipitation variability on Mt. Olympus, Greece. Climate Dynamics doi:10.1007/s00382-014-2313-3.Google Scholar
Knowlton, K., Rotkin-Ellman, M., King, G., Margolis, H. G., Smith, D., Solomon, G., Trent, R., and English, P., 2009. The 2006 California heat wave: Impacts on hospitalizations and emergency department visits. Environmental Health Perspectives 117(1):6167.CrossRefGoogle ScholarPubMed
Koleva, E., and Alexandrov, V., 2008. Drought in the Bulgarian low regions during the 20th century. Theoretical and Applied Climatology 92(1–2):113120.Google Scholar
Kostopoulou, E., and Jones, P. D., 2005. Assessment of climate extremes in the Eastern Mediterranean. Meteorology and Atmospheric Physics 89(1–4):6985.Google Scholar
Lebourgeois, F., 2000. Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Annals of Forest Science 57(2):155164.Google Scholar
Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., Hannides, C., Lange, M. A., Tanarhte, M., Tyrlis, E., and Xoplaki, E., 2012. Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change 114(3–4):667687.Google Scholar
Levanic, T., Gricar, J., Gagen, M., Jalkanen, R., Loader, N. J., McCarroll, D., Oven, P., and Robertson, I., 2009. The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees - Structure and Function 23(1):169180.Google Scholar
Levanič, T., Popa, I., Poljanšek, S., and Nechita, C., 2013. A 323-year long reconstruction of drought for SW Romania based on black pine (Pinus nigra) tree-ring widths. International Journal of Biometeorology 57(5):703714.Google Scholar
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326(5957):12561260.Google Scholar
Martín-Benito, D., Cherubini, P., del Río, M., and Cañellas, I., 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22(3):363373.CrossRefGoogle Scholar
Meehl, G. A., and Tebaldi, C., 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994997.Google Scholar
Metaxas, D. A., Bartzokas, A., and Vitsas, A., 1991. Temperature fluctuations in the Mediterranean area during the last 120 years. International Journal of Climatology 11(8):897908.Google Scholar
Mitchell, T. D., and Jones, P. D., 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25(6):693712.Google Scholar
Moriondo, M., Good, P., Durao, R., Bindi, M., Giannakopoulos, C., and Corte-Real, J., 2006. Potential impact of climate change on fire risk in the Mediterranean area. Climate Research 31(1):8595.Google Scholar
Nastos, P. T., Philandras, C. M., Kapsomenakis, J., and Eleftheratos, K., 2011. Variability and trends of mean maximum and mean minimum air temperature in Greece from ground-based observations and NCEP-NCAR reanalysis gridded data. International Journal of Remote Sensing 32(21):61776192.Google Scholar
Nicault, A., Alleaume, S., Brewer, S., Carrer, M., Nola, P., and Guiot, J., 2008. Mediterranean drought fluctuation during the last 500 years based on tree-ring data. Climate Dynamics 31(2–3):227245.Google Scholar
Oppenheimer, C., 2003. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography 27(2):230259.Google Scholar
PAGES 2k Consortium, 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6(5):339346.Google Scholar
Panayotov, M., Bebi, P., Trouet, V., and Yurukov, S., 2010. Climate signal in tree-ring chronologies of Pinus peuce and Pinus heldreichii from the Pirin Mountains in Bulgaria. Trees - Structure and Function 24(3):479490.Google Scholar
Pauling, A., Luterbacher, J., Casty, C., and Wanner, H., 2006. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Climate Dynamics 26(4):387405.Google Scholar
Perley, S., 1891. Historic Storms of New England. Salem Press, Salem, MA.Google Scholar
Peterson, T., Easterling, D., Karl, T., Groisman, P., Nicholls, N., Plummer, N., Torok, S., Auer, I., Boehm, R., Gullett, D., Vincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Forland, E., Hanssen-Bauer, I., Alexandersson, H., Jones, P., and Parker, D., 1998. Homogeneity adjustments of in situ atmospheric climate data: A review. International Journal of Climatology 18(13):14931517.Google Scholar
Philandras, C. M., Nastos, P. T., and Repapis, C. C., 2008. Air temperature variability and trends over Greece. Global Nest Journal 10(2):273285.Google Scholar
Piervitali, E., and Colacino, M., 2001. Evidence of drought in western Sicily during the period 1565–1915 from liturgical offices. Climatic Change 49(1–2):225238.Google Scholar
Poljansek, S., Ballian, D., Nagel, T. A., and Levanic, T., 2012. A 435-year long European black pine (Pinus nigra) chronology for the central-western Balkan region. Tree-Ring Research 68(1):3144.Google Scholar
Popa, I., and Kern, Z., 2009. Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians. Climate Dynamics 32(7–8):11071117.Google Scholar
Repapis, C. C., and Philandras, C. M., 1988. A note on the air-temperature trends of the last 100 years as evidenced in the eastern Mediterranean time-series. Theoretical and Applied Climatology 39(2):9397.Google Scholar
Robertson, A., Overpeck, J., Rind, D., Mosley-Thompson, E., Zielinski, G., Lean, J., Koch, D., Penner, J., Tegen, I., and Healy, R., 2001. Hypothesized climate forcing time series for the last 500 years. Journal of Geophysical Research-Atmospheres 106(D14):14,78314,803.Google Scholar
Rossi, S., Deslauriers, A., Anfodillo, T., Morin, H., Saracino, A., Motta, R., and Borghetti, M., 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist 170(2):301310.Google Scholar
Rudzka, D., McDermott, F., and Suric, M., 2012. A late Holocene climate record in stalagmites from Modric Cave (Croatia). Journal of Quaternary Science 27(6):585596.CrossRefGoogle Scholar
Schroter, D., Cramer, W., Leemans, R., Prentice, I. C., Araujo, M. B., Arnell, N. W., Bondeau, A., Bugmann, H., Carter, T. R., Gracia, C. A., de la Vega-Leinert, A. C., Erhard, M., Ewert, F., Glendining, M., House, J. I., Kankaanpaa, S., Klein, R. J. T., Lavorel, S., Lindner, M., Metzger, M. J., Meyer, J., Mitchell, T. D., Reginster, I., Rounsevell, M., Sabate, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., and Zierl, B., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):13331337.Google Scholar
Schweingruber, F. H., Fritts, H. C., Braeker, O. U., Drew, L. G., and Schaer, E., 1978. The X-ray technique as applied to dendrochronology. Tree-Ring Bulletin 38:6191.Google Scholar
Seim, A., Büntgen, U., Fonti, P., Haska, H., Herzig, F., Tegel, W., Trouet, V., and Treydte, K., 2012. The paleoclimatic value of a millennium-long tree-ring chronology from Albania. Climate Research 51:217228.Google Scholar
Serre-Bachet, F., 1994. Middle-ages temperature reconstructions in Europe, a focus on northeastern Italy. Climatic Change 26(2–3):213224.Google Scholar
Shabalova, M. V., and van Engelen, A. G. V., 2003. Evaluation of a reconstruction of winter and summer temperatures in the low countries, AD 764–1998. Climatic Change 58(1–2):219242.Google Scholar
Smoyer-Tomic, K. E., Kuhn, R., and Hudson, A., 2003. Heat wave hazards: An overview of heat wave impacts in Canada. Natural Hazards 28(2–3):463485.Google Scholar
Stothers, R. B., 1984. The great Tambora eruption in 1815 and its aftermath. Science 224(4654):11911198.Google Scholar
Stuiver, M., 1961. Variations in radiocarbon concentration and sunspot activity. Journal of Geophysical Research 66(1):273276.Google Scholar
Tardif, J., Camarero, J. J., Ribas, M., and Gutierrez, E., 2003. Spatiotemporal variability in tree growth in the Central Pyrenees: Climatic and site influences. Ecological Monographs 73(2):241257.Google Scholar
Toreti, A., Desiato, F., Fioravanti, G., and Perconti, W., 2010. Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Climatic Change 99(1–2):211227.Google Scholar
Touchan, R., Funkhouser, G., Hughes, M. K., and Erkan, N., 2005a. Standardized precipitation index reconstructed from Turkish tree-ring widths. Climatic Change 72(3):339353.CrossRefGoogle Scholar
Touchan, R., Xoplaki, E., Funkhouser, G., Luterbacher, J., Hughes, M. K., Erkan, N., Akkemik, U., and Stephan, J., 2005b. Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Climate Dynamics 25(1):7598.CrossRefGoogle Scholar
Touchan, R., Akkemik, U., Hughes, M. K., and Erkan, N., 2007. May-June precipitation reconstruction of Southwestern Anatolia, Turkey during the last 900 years from tree rings. Quaternary Research 68(2):196202.Google Scholar
Touchan, R., Anchukaitis, K. J., Meko, D. M., Attalah, S., Baisan, C., and Aloui, A., 2008a. Long term context for recent drought in northwestern Africa. Geophysical Research Letters 35(13):L13705, doi:10.1029/2008gl034264.Google Scholar
Touchan, R., Meko, D. M., and Aloui, A., 2008b. Precipitation reconstruction for Northwestern Tunisia from tree rings. Journal of Arid Environments 72(10):18871896.Google Scholar
Tran, L., Knight, C. G., and Wesner, V., 2002. Drought in Bulgaria and atmospheric synoptic conditions over Europe. GeoJournal 57:149157.Google Scholar
Trouet, V., and van Oldenborgh, G. J., 2013. KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology. Tree-Ring Research 69(1):313.Google Scholar
Trouet, V., Panayotov, M., Ivanova, A., and Frank, D., 2012. A Pan-European summer teleconnection mode recorded by a new temperature reconstruction from the eastern Mediterranean (1768–2008). The Holocene 22(8):887898.Google Scholar
Vakarelov, I., Mirtchev, S., Kachaunova, E., and Simeonova, N., 2001. Reconstruction of summer air temperatures by dendrochronological analysis of Macedonian pine (Pinus peuce Griseb.) in Pirin mountains (Southeast Bulgaria). Forestry Ideas 1–4:1626.Google Scholar
Wagner, S., and Zorita, E., 2005. The influence of volcanic, solar and CO2 forcing on the temperatures in the Dalton minimum (1790–1830): A model study. Climate Dynamics 25(2–3):205218.CrossRefGoogle Scholar
Wigley, T. M. L., Briffa, K. R., and Jones, P. D., 1984. On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2):201213.Google Scholar
Xoplaki, E., Maheras, P., and Luterbacher, J., 2001. Variability of climate in Meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Climatic Change 48(4):581615.CrossRefGoogle Scholar
Xoplaki, E., Gonzalez-Rouco, J. F., Gyalistras, D., Luterbacher, J., Rickli, R., and Wanner, H., 2003a. Interannual summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and Mediterranean SSTs 1950–1999. Climate Dynamics 20(5):537554.Google Scholar
Xoplaki, E., Gonzalez-Rouco, J. F., Luterbacher, J., and Wanner, H., 2003b. Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Climate Dynamics 20(7–8):723739.Google Scholar
Zaidman, M. D., Rees, H. G., and Young, A. R., 2002. Spatio-temporal development of streamflow droughts in northwest Europe. Hydrology and Earth System Sciences 6(4):733751.Google Scholar
Zumbühl, H. J., Steiner, D., and Nussbaumer, S. U., 2008. 19th century glacier representations and fluctuations in the central and western European Alps: An interdisciplinary approach. Global and Planetary Change 60(1–2):4257.Google Scholar