Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:23:12.077Z Has data issue: false hasContentIssue false

Towards On-Line 14C Analysis of Carbonaceous Aerosol Fractions

Published online by Cambridge University Press:  18 July 2016

Nolwenn Perron
Affiliation:
Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland
Sönke Szidat*
Affiliation:
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland
Simon Fahrni
Affiliation:
Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland
Matthias Ruff
Affiliation:
Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland Institute for Particle Physics, ETH Hönggerberg, CH-8093 Zürich, Switzerland
Lukas Wacker
Affiliation:
Institute for Particle Physics, ETH Hönggerberg, CH-8093 Zürich, Switzerland
André SH Prévôt
Affiliation:
Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland
Urs Baltensperger
Affiliation:
Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Atmospheric carbonaceous aerosol is traditionally divided into organic carbon (OC) and elemental carbon (EC). Their respective carbon amounts are usually analyzed by means of an OC/EC analyzer and their fossil and non-fossil origins can be determined by radiocarbon analysis, which has proven to be a powerful tool for carbonaceous aerosol source apportionment. Thus far, separation of OC and EC has been performed off-line by manual and time-consuming techniques. We present an on-line system that couples a commercial OC/EC analyzer with the gas ion source of the accelerator mass spectrometer (AMS) MICADAS and its CO2 feeding system. The performance achieved with reference materials and blanks are discussed to demonstrate the potential of this coupling for source apportionment of atmospheric carbonaceous particulate matter.

Type
Methods, Applications, and Developments
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bae, M-S, Schauer, JJ, DeMinter, JT, Turner, JR, Smith, D, Cary, RA. 2004. Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method. Atmospheric Environment 38(18):2885–93.CrossRefGoogle Scholar
Birch, ME, Cary, RA. 1996. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Science and Technology 25(3):221–41.CrossRefGoogle Scholar
Bronk Ramsey, C, Ditchfield, P, Humm, M. 2004. Using a gas ion source for radiocarbon AMS and GC-AMS. Radiocarbon 46(1):2532.Google Scholar
Cavalli, F, Viana, M, Yttri, KE, Genberg, J, Putaud, J-P. 2009. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmospheric Measurement Techniques 2:2321–45.Google Scholar
Chow, JC, Watson, JG, Pritchett, LC, Pierson, WR, Frazier, CA, Purcell, RG. 1993. The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmospheric Environment 27(8):1185–201.Google Scholar
Conny, JM, Norris, GA, Gould, TR. 2009. Factorial-based response-surface modeling with confidence intervals for optimizing thermal-optical transmission analysis of atmospheric black carbon. Analytica Chimica Acta 635(2):144–56.Google Scholar
Currie, LA, Kessler, JD. 2005. On the isolation of elemental carbon (EC) for micro-molar 14C accelerator mass spectrometry: development of a hybrid reference material for 14C-EC accuracy assurance, and a critical evaluation of the thermal optical kinetic (TOK) EC isolation procedure. Atmospheric Chemistry and Physics 5:2833–45.Google Scholar
Hallquist, M, Wenger, JC, Baltensperger, U, Rudich, Y, Simpson, D, Claeys, M, Dommen, J, Donahue, NM, George, C, Goldstein, AH, Hamilton, JF, Hertmann, H, Hoffmann, T, Iinuma, Y, Jang, M, Jenkin, ME, Jimenez, JL, Kiendler-Scharr, A, Maenhaut, W, McFiggans, G, Mentel, TF, Monod, A, Prévôt, ASH, Seinfeld, JH, Surratt, JD, Szmigielski, R, Wildt, J. 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics 9:5155–236.Google Scholar
Highwood, EJ, Kinnersley, RP. 2006. When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International 32(4):560–66.CrossRefGoogle ScholarPubMed
IPCC. 2007. Climate change 2007: the physical science basis. Summary for policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Prepared by Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. http://www.ipcc.ch/SPM2feb07.pdf.Google Scholar
Le Clercq, M, van der Plicht, J, Gröning, M. 1998. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295–7.Google Scholar
Mauderly, JL, Chow, JC. 2008. Health effects of organic aerosols. Inhalation Toxicology 20(3):257–88.Google Scholar
Pöschl, U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition 44(46):7520–40.Google Scholar
Ruff, M, Wacker, L, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S. 2007. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49(2):307–14.Google Scholar
Ruff, M, Fahrni, S, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S, Wacker, L. 2010a. Online radiocarbon measurements of small samples using elemental analyzer and MICADAS gas ion source. Radiocarbon 52(4).Google Scholar
Ruff, M, Szidat, S, Gäggeler, HW, Suter, M, Synal, H-A, Wacker, L. 2010b. Gaseous radiocarbon measurements of small samples. Nuclear Instruments and Methods in Physics Research B 268(7–8):790–4.Google Scholar
Schmid, H, Laskus, L, Abraham, HJ, Baltensperger, U, Lavanchy, V, Bizjak, M, Burba, P, Cachier, H, Crow, D, Chow, J, Gnauk, T, Even, A, ten Brink, HM, Giesen, KP, Hitzenberger, R, Hueglin, C, Maenhaut, W, Pio, C, Carvalho, A, Putaud, JP, Toom-Sauntry, D, Puxbaum, H. 2001. Results of the “Carbon Conference” international aerosol carbon round robin test stage I. Atmospheric Environment 35(12):2111–21.CrossRefGoogle Scholar
Synal, H-A, Döbeli, M, Jacob, S, Stocker, M, Suter, M. 2004. Radiocarbon AMS towards its low-energy limits. Nuclear Instruments and Methods in Physics Research B 223–224:339–45.Google Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
Szidat, S. 2009. Sources of Asian haze. Science 323(5913):470–1.CrossRefGoogle ScholarPubMed
Szidat, S, Jenk, TM, Gäggeler, HW, Synal, H-A, Fisseha, R, Baltensperger, U, Kalberer, M, Samburova, V, Reimann, S, Kasper-Giebl, A, Hajdas, I. 2004a. Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zürich, Switzerland. Atmospheric Environment 38(24):4035–44.Google Scholar
Szidat, S, Jenk, TM, Gäggeler, HW, Synal, H-A, Hajdas, I, Bonani, G, Saurer, M. 2004b. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment. Nuclear Instruments and Methods in Physics Research B 223–224:829–36.Google Scholar
Szidat, S, Jenk, TM, Synal, H-A, Kalberer, M, Wacker, L, Hajdas, I, Kasper-Giebl, A, Baltensperger, U. 2006. Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. Journal of Geophysical Research 111:D07206, doi:10.1029/2005JD006590.Google Scholar
Szidat, S, Prévôt, ASH, Sandradewi, J, Alfarra, MR, Synal, H-A, Wacker, L, Baltensperger, U. 2007. Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophysical Research Letters 34: L05820, doi:10.1029/2006GL028325.Google Scholar
ten Brink, H, Maenhaut, W, Hitzenberger, R, Gnauk, T, Spindler, G, Even, A, Chi, XG, Bauer, H, Puxbaum, H, Putaud, JP, Tursic, J, Berner, A. 2004. INTERCOMP-2000: the comparability of methods in use in Europe for measuring the carbon content of aerosol. Atmospheric Environment 38(38):6507–19.Google Scholar
Turpin, BJ, Saxena, P, Andrews, E. 2000. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmospheric Environment 34(18):29833013.Google Scholar
Uhl, T, Kretschmer, W, Luppold, W, Scharf, A. 2004. Direct coupling of an elemental analyzer and a hybrid ion source for AMS measurements. Radiocarbon 46(1):6575.Google Scholar
Wacker, L, Christl, M, Synal, H-A. 2010. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976–9.Google Scholar
Yang, H, Yu, JZ. 2002. Uncertainties in charring correction in the analysis of elemental and organic carbon in atmospheric particles by thermal/optical methods. Environmental Science & Technology 36(23):5199–204.Google Scholar