Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T08:43:58.008Z Has data issue: false hasContentIssue false

Thermal Decomposition of Lead White for Radiocarbon Dating of Paintings

Published online by Cambridge University Press:  02 July 2019

Lucile Beck*
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Cyrielle Messager
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Stéphanie Coelho
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Ingrid Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Emmanuelle Delqué-Količ
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Marion Perron
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Solène Mussard
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Jean-Pascal Dumoulin
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Christophe Moreau
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
Victor Gonzalez
Affiliation:
Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands
Eddy Foy
Affiliation:
LAPA-IRAMAT, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
Frédéric Miserque
Affiliation:
DEN Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
Céline Bonnot-Diconne
Affiliation:
2CRC - Centre de Conservation et de Restauration du Cuir, Activillage - Centr’ALP, 235 rue de Corporat, 38430 Moirans, France
*
*Corresponding author. Email: [email protected].

Abstract

Lead carbonates were used as cosmetic and pigment since Antiquity. The pigment, known as lead white, was generally composed of cerussite and hydrocerussite. Unlike most ancient pigments, lead white was obtained by a synthetic route involving metallic lead, vinegar and organic matter. Fermentation of organic matter produces heat and CO2 emission, leading to the formation of carbonates. As lead white is formed by trapping CO2, radiocarbon (14C) dating can thus be considered. We have developed a protocol to prepare lead white. We selected modern pigments for the experiment implementation and ancient cosmetic and paintings for dating. After characterization of the samples by XRD, thermal decomposition of cerussite at various temperatures was explored in order to select the appropriate conditions for painting samples. CO2 extraction yield, SEM and XPS were used to characterize the process. Thermal decomposition at 400°C was successfully applied to mixtures of lead white with other paint components (oil as binder, calcite as filler/extender) and to historical samples. We obtained radiocarbon measurements in agreement with the expected dates, demonstrating that thermal decomposition at 400°C is efficient for a selective decomposition of lead white and that paintings can be directly 14C-dated by dating lead white pigment.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Ball, MC, Casson, MJ. 1975. Thermal studies on lead (II) salts—I. Stoicheiometry of lead carbonate decomposition at 1 atm. pressure. Journal of Inorganic Nuclear Chemistry 37:22532255.CrossRefGoogle Scholar
Beck, CW. 1950. Differential thermal analysis curves of carbonate minerals. American Minerologist 35:9851013.Google Scholar
Beck, L, de Viguerie, L, Walter, P, et al. 2010. New approaches for investigating paintings by ion beam techniques. Nuclear Instruments and Methods in Physics Research B 268:20862091.CrossRefGoogle Scholar
Beck, L, Caffy, I, Delqué-Kolic, E, Moreau, C, Dumoulin, JP, Perron, M, Guichard, H, Jeammet, V. 2018. Absolute dating of lead carbonates in ancient cosmetics by radiocarbon. Communications Chemistry 1(34):17. doi: 10.1038/s42004-018-0034-y.CrossRefGoogle Scholar
Bonnot-Diconne, C, Robinet, L, Pacheco, C, Iole, M, Paris, M. 2014. Multi-technique analysis of gilt-leather wall coverings (16th–18th centuries). ICOM-CC 17th Triennial Conference preprints. Melbourne. 15–19 September 2014. Paris: International Council of Museums.Google Scholar
Brock, F, Eastaugh, N, Ford, T, Townsend, JH. 2018. Bomb-pulse radiocarbon dating of modern paintings on canvas. Radiocarbon 60(1):111.Google Scholar
Bronk Ramsey, C, Scott, M, van der Plicht, J. 2013. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55:20212027.CrossRefGoogle Scholar
Caforio, L, Fedi, M, Liccioli, L, Salvini, A. 2013. The issue of contamination by synthetic resins in radiocarbon dating: the case of a painting by Ambrogio Lorenzetti. Procedia Chemistry 8:2834.CrossRefGoogle Scholar
Ciomartan, DA, Clark, RJH, McDonald, LJ, Odlyha, M. 1996. Studies on the thermal decomposition of basic lead(II) carbonate by Fourier transform Raman spectroscopy, X-ray diffraction and thermal analysis. Journal of the Chemical Society, Dalton Transactions 18:36393645.CrossRefGoogle Scholar
de Viguerie, L, Beck, L, Salomon, J, et al. 2009. Composition of Renaissance paint layers: simultaneous particle induced x-ray emission and backscattering spectrometry. Analytical Chemistry 81:79607966.CrossRefGoogle ScholarPubMed
Dumoulin, JP, Comby-Zerbino, C, Delqué-Kolic, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59:713726.10.1017/RDC.2016.116CrossRefGoogle Scholar
Fedi, ME, Caforio, L, Liccioli, L, Mandò, PA, Salvini, A, Taccetti, F. 2014 A simple and effective removal procedure of synthetic resins to obtain accurate radiocarbon dates of restored artworks. Radiocarbon 56:969979.CrossRefGoogle Scholar
Gandolfo, N, Richardin, P. 2011. Radiocarbon dating of an almond of the Eretria city (CA 518). Report n°21072. C2RMF. Paris: Louvre Museum.Google Scholar
Gettens, RJ, Kühn, H, Chase, WT. 1993. Lead white. In: Roy, A, editor. Artists’ pigments: a handbook of their history and characteristics. Vol. 2. Washington (DC): National Gallery of Art. p. 6781.Google Scholar
Gonzalez, V, Gourier, D, Calligaro, T, Toussaint, K, Wallez, G, Menu, M. 2017a. Revealing the origin and history of lead-white pigments by their photoluminescence properties. Analytical Chemistry 89:29092918.CrossRefGoogle ScholarPubMed
Gonzalez, V, Wallez, G, Calligaro, T, Cotte, M, de Nolf, W, Eveno, M, Ravaud, E, Menu, M. 2017b. Synchrotron-based high angle resolution and high lateral resolution X-ray diffraction reveals lead white pigment qualities in Old Masters paintings. Analytical Chemistry 89(24):1320313211.CrossRefGoogle Scholar
Hasselin Rous, I, Huguenot, C. 2017. Offrandes hellénistiques en miniature: le mobilier d’une tombe d’enfant d’Erétrie conservé au musée du Louvre. Revue Archéologique 63:364.CrossRefGoogle Scholar
Hendriks, L, Hajdas, I, McIntyre, C, Küffner, M, Scherrer, NC, Ferreira, ESB. 2016. Microscale radiocarbon dating of paintings. Applied Physics A 122:16.CrossRefGoogle Scholar
Hendriks, L, Hajdas, I, Ferreira, ESB, Scherrer, NC, Zumbühl, S, Küffner, M, Wacker, L, Synal, HA, Günther, D. 2018. Combined 14C analysis of canvas and organic binder for dating a painting. Radiocarbon 60(1):4958.CrossRefGoogle Scholar
Hendriks, L, Hajdas, I, Ferreira, ESB, Scherrer, NC, Zumbühl, S, Küffner, M, Carlyle, L, Synal, HA. Günther, D. 2019. Selective dating of paint components: radiocarbon dating of lead white pigments. Radiocarbon 61:473493.CrossRefGoogle Scholar
Katsaros, T, Liritzis, I, Laskaris, N. 2010. Identification of Theophrastus’ pigments egyptios yanos and psimythion from archaeological excavations. ArcheoSciences 34:6979.CrossRefGoogle Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid latitudes of the Northern Hemisphere. Radiocarbon 46(3):12611272.CrossRefGoogle Scholar
Lucas, A. 1930. Cosmetics, perfumes and incense in ancient Egypt. The Journal of Egyptian Archaeology 16:4153.CrossRefGoogle Scholar
Martinetto, P, Anne, M, Dooryhée, E, Drakopoulos, M, Dubus, M, Salomon, J, Simonovici, A, Walter, P. 2001. Synchrotron X-ray micro-beam studies of ancient Egyptian make-up. Nuclear Instruments and Methods in Physics Research B 181:744748.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41:227239.CrossRefGoogle Scholar
Moreau, C, Caffy, I, Comby, C, Delqué-Kolic, E, Dumoulin, JP, Hain, S, Quiles, A, Setti, V, Souprayen, C, Thellier, B, Vincent, J. 2013. Research and Development of the Artemis 14C AMS Facility: Status Report. Radiocarbon. 55:331337CrossRefGoogle Scholar
Pedanius Dioscorides of Anazarbus. De material medica, Beck LY, translator; Beck LY, 2017. editor. 3rd revised edition. Hildesheim: Olms Verlag AG.Google Scholar
Pliny the Elder. 1855. The natural history. Bostock J, Riley HT, translators. London: Taylor and Francis.Google Scholar
Pulsifer, WH. 1888. Notes for a history of lead and an inquiry into the development of the manufacture of white lead and lead oxides. New York: D Van Nostrand.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Warren Beck, J, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Lawrence Edwards, R, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Marian Scott, E, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50, 000 years cal BP. Radiocarbon 55:18691887.CrossRefGoogle Scholar
Stols-Witlox, M. 2011. The heaviest and the whitest: lead white quality in north western European documentary sources, 1400–1900. In: Spring, M, editor. Studying Old Master paintings– technology and practice. London: Archetype Publications. p. 284294.Google Scholar
Stols-Witlox, M. 2014. Historical recipes for preparatory layers for oil paintings in manuals, manuscripts and handbook in North West Europe, 1550–1900: analysis and reconstructions 1400–1900 [PhD thesis]. University of Amsterdam.Google Scholar
Theophrastus. 1956. Liber de lapidibus. In: Caley, ER, Richards, JFC, editors. Theophrastus on stones. Introduction. Columbus (OH): Ohio State University Press. Greek text with English translation and commentary.Google Scholar
Walter, P, Martinetto, P, Tsoucaris, G, Bréniaux, R, Lefebvre, MA, Richard, G, Talabot, J, Dooryhee, E. 1999. Making make-up in Ancient Egypt. Nature 397:483484.CrossRefGoogle Scholar
Warne, SS, Bayliss, P. 1962. The differential thermal analysis of cerussite. The American Mineralogist 47:10111023.Google Scholar
Welcomme, E, Walter, P, Van Elslande, E, Tsoucaris, G. 2006. Investigation of white pigments used as make-up during the Greco-Roman period. Applied Physics A 83:551556.CrossRefGoogle Scholar
Welcomme, E, Walter, P, Bleuet, P, Hodeau, J-L, Dooryhee, E, Martinetto, P, Menu, M. 2007. Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Applied Physics A 89:825832.CrossRefGoogle Scholar
Supplementary material: File

Beck et al. supplementary material

Beck et al. supplementary material 1

Download Beck et al. supplementary material(File)
File 282.6 KB