Published online by Cambridge University Press: 09 February 2016
Guided by simulations using SIMION 8.1, a series of modifications were made to an experimental version of an Isobar Separator for Anions (ISA). The resulting improved version of the ISA provides a means of re-energizing the ions after they are cooled by gas collisions as they pass through the gas-filled radiofrequency quadrupoles (RFQ), and also provides higher transmission efficiencies. Reinvestigation of the separation of CaF3− and KF3− with this refined apparatus resulted in a better balance between isobar suppression and analyte transmission. KF3− was attenuated at eV energies by 4 orders of magnitude while 40% transmission of CaF3− was retained, for a 20keV CaF3− beam of Φ2mm and ±12mr. These results advance the possibility of an efficient small ISA-AMS system for both cosmogenic and medical applications of 41Ca.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.