Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T12:42:37.949Z Has data issue: false hasContentIssue false

STABLE ISOTOPIC ANALYSIS AND RADIOCARBON DATING OF MICROPOGONIAS FURNIERI OTOLITHS (SCIAENIDAE) FROM SOUTHEASTERN BRAZILIAN COAST: SEASONAL PALAEOENVIRONMENTAL INSIGHT

Published online by Cambridge University Press:  12 September 2022

Mariana Samor Lopes*
Affiliation:
Departamento de Biologia Marinha, Universidade Federal Fluminense (UFF), Laboratório de Paleoecologia e Mudanças Globais (LP&MG). Campus Gragoatá, Bloco M, 24210-201, Niterói, RJ, Brazil
Elise Dufour
Affiliation:
Archéozoologie, Archéobotanique : sociétés, pratiques, environnements (AASPE) UMR 7209 Muséum national d’Histoire naturelle, CNRS, 55 rue Buffon, 75005 Paris cedex 05, France
Elisamara Sabadini-Santos
Affiliation:
Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, RJ, Brazil
Maria Dulce Gaspar
Affiliation:
Programa de Pós–Graduação em Arqueologia do Museu Nacional (PPGArq), Universidade Federal do Rio de Janeiro (UFRJ), Quinta da Boa Vista, s/n, Rio de Janeiro, 20940-40, RJ, Brazil
Kita Macario
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil
Bruna da Silva Mota Neto
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil
Olivier Tombret
Affiliation:
Archéozoologie, Archéobotanique : sociétés, pratiques, environnements (AASPE) UMR 7209 Muséum national d’Histoire naturelle, CNRS, 55 rue Buffon, 75005 Paris cedex 05, France
Denis Fiorillo
Affiliation:
Archéozoologie, Archéobotanique : sociétés, pratiques, environnements (AASPE) UMR 7209 Muséum national d’Histoire naturelle, CNRS, 55 rue Buffon, 75005 Paris cedex 05, France
Michel Lemoine
Affiliation:
Archéozoologie, Archéobotanique : sociétés, pratiques, environnements (AASPE) UMR 7209 Muséum national d’Histoire naturelle, CNRS, 55 rue Buffon, 75005 Paris cedex 05, France
Leandro Amaro Pessoa
Affiliation:
Departamento de pesquisa e engenharia, Instituto Virtual Internacional de Mudanças Globais (IVIG- COPPE / UFRJ), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Avenida Pedro Calmon s/n, 21941-596, RJ, Brazil
Sandrine Grouard
Affiliation:
Archéozoologie, Archéobotanique : sociétés, pratiques, environnements (AASPE) UMR 7209 Muséum national d’Histoire naturelle, CNRS, 55 rue Buffon, 75005 Paris cedex 05, France
Orangel Aguilera
Affiliation:
Departamento de Biologia Marinha, Universidade Federal Fluminense (UFF), Laboratório de Paleoecologia e Mudanças Globais (LP&MG). Campus Gragoatá, Bloco M, 24210-201, Niterói, RJ, Brazil
*
*Corresponding author. Email: [email protected]

Abstract

Isotopic analysis of Micropogonias furnieri otoliths were used to get insight into palaeoceanographic conditions in the Guanabara Bay and Saquarema Lagoon, Rio de Janeiro state (RJ), located on the southeastern coast of Brazil, under upwelling influence of the Cabo Frio system. Archaeological otoliths come from two Holocene shellmounds (or sambaquis): Galeão and Beirada. For the first time, radiocarbon analysis using high accuracy techniques were performed at Galeão. Age range was determined to be between 5820 and 4980 cal BP, which extends the chronology of human settlement in the Guanabara Bay. Micro-samples of the otoliths were collected sequentially from the core to the edge, to provide continuous δ18O and δ13C isotopic profiles over the lifetime of the individual fish. Derived-δ18Ooto palaeotemperature estimates vary according to seasonality, resulting in a palaeoceanographic variation between 8 to 31°C for Guanabara Bay and 8 and 28°C for the Saquarema Lagoon. Our data indicate that whitemouth croakers were captured during the Middle Holocene from the Guanabara Bay and Saguarema Lagoon and resided in cooler temperatures compared to temperatures of current conditions.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilera, O, Belem, AL, Angelica, R, Macário, K, Crapez, M, Nepomuceno, A, Paes, E, Tenorio, MC, Dias, F, Souza, R, Rapagna, L, Carvalho, C, Silva, E. 2016. Fish bone diagenesis in southeastern Brazilian shell mounds and its importance for paleoenvironmental studies. Quaternary International 391(1):1825.CrossRefGoogle Scholar
Albuquerque, CQ, Miekeley, N, Muelbert, JH, Walther, BD, Jaureguizar, AJ. 2012. Estuarine dependency in a marine fish evaluated with otolith chemistry. Marine Biology 159(1):22292239.CrossRefGoogle Scholar
Albuquerque, AL, Meyers, P, Belem, AL, Turcq, B, Siffedine, A, Mendoza, U, Capilla, R. 2016. Mineral and elemental indicators of post-glacial changes in sediment delivery and deposition under a western boundary upwelling system (Cabo Frio, southeastern Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology 445(1):7282.CrossRefGoogle Scholar
Amador, ES. 1980. Unidades sedimentares Cenozóicas do Recôncavo da Baía de Guanabara. Anais da Academia Brasileira de Ciências 52(4):756761.Google Scholar
Barange, M, Perry, RI. 2009. Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture. In: Cochrane K, De Young C, Soto D, editors. Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. Fisheries technical paper FAO 530:7–95.Google Scholar
Barbosa-Guimarães, M. 2011. Mudança e colapso no Litoral Fluminense: os sambaquieiros e os outros no Complexo Lagunar de Saquarema, RJ. Revista do Museu de Arqueologia e Etnologia 21(1):7191.CrossRefGoogle Scholar
Béarez, P, Carlier, G, Lorand, JP, Parodi, GC. 2005. Destructive and non-destructive microanalysis of biocarbonates applied to anomalous otoliths of archaeological and modern sciaenids (Teleostei) from Peru and Chile. Académie des sciences 328(1):243252.Google ScholarPubMed
Begg, GA, Weidman, CR. 2001. Stable δ13C and δ 18O isotopes in otoliths of haddock Melanogrammus aeglefinus from the northwest Atlantic Ocean. Marine Ecology Progress Series 216:223233 CrossRefGoogle Scholar
Behling, H. 1995. A high-resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. Journal of Paleolimnology 14(1):253268.CrossRefGoogle Scholar
Behling, H. 2002. South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177(1):1927.CrossRefGoogle Scholar
Belem, AL, Castelao, RM, Albuquerque, ALS. 2013. Controls of subsurface temperature variability in a western boundary upwelling system. Geophysical Research Letters 40(1):13621366.CrossRefGoogle Scholar
Bertucci, T, Aguilera, O, Vasconcelos, C, Nascimento, G, Marques, G, Macario, K, Albuquerque, C, Lima, TA, Belém, A. 2018. Late Holocene palaeotemperatures and palaeoenvironments in the Southeastern Brazilian coast inferred from otolith geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 503(1):4050.CrossRefGoogle Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730.CrossRefGoogle Scholar
Campana, SE, Neilson, JD. 1985. Microstructure of fish otoliths. Canadian Journal of Fishes and Aquatic Science 42(1):10141032.CrossRefGoogle Scholar
Campana, SE. 1984. Microstructural growth patterns in the otoliths of larval and juvenile starry flounder, Platichthys stellatus. Canadian Journal of Zoology 62:15071512.CrossRefGoogle Scholar
Carbonel, C. 1998. Modelling of upwelling in the coastal area of Cabo Frio (Rio de Janeiro – Brazil). Revista brasileira de oceanografia 46(1):117.CrossRefGoogle Scholar
Carmouze, JP, Knoppers, B, Vasconcelos, P. 1991. Metabolism of a subtropical Brazilian lagoon. Biogeochemistry 14(129):1481991.CrossRefGoogle Scholar
Carneiro, MH, de Castro, PMG, Tutui, SLS, Bastos, GCC. 2005. Micropogonias Furnieri (Desmarest, 1823). Estoque Sudeste. In: Cergole MC, Ávila-Da-Silva AO, Rossiwongtschowski CLB, editors. Análise das Principais Pescarias Comerciais da Região Sudeste-Sul do Brasil: Dinâmica populacional das Espécies em Explotação. Série Documentos REVIZEE: Score Sul, São Paulo: Instituto Oceanográfico, Universidade de São Paulo. p 94–100.Google Scholar
Carvalho, C, Macário, K, Lima, T, Chanca, I, Oliveira, F, Alves, EQ, Bertucci, T, Aguilera, O. 2018. Otolith–based chronology of Brazilian Shellmounds. Radiocarbon 56(2):489499.Google Scholar
Castro, JWA, Suguio, K, Seoane, JCS, Cunha, AMD, Dias, FF. 2014. Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. Anais da Academia Brasileira de Ciências 86(2):671683.CrossRefGoogle Scholar
Catanzaro, LF, Baptista-Neto, JA, Guimaraes, MSD, Silva, CG. 2004. Distinctive sedimentary processes in Guanabara Bay – SE/Brazil, based on the analysis of echo–character (7.0 kHz). Revista Brasileira de Geofísica 22(1):6983.CrossRefGoogle Scholar
Cervigón, F. 1993. Los peces marinos de Venezuela. Caracas: Fundación Científica Los Roques.CrossRefGoogle Scholar
Chanton, JP, Lewis, FG. 1999. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 22(3):575.CrossRefGoogle Scholar
CNSA. 2018. Cadastro Nacional de Sítios Arqueológicos. Available from: http://portal.iphan.gov.br/sgpa/cnsa_detalhes.php?26729.Google Scholar
Cook, PK, Dufour, E, Languille, MA, Mocuta, C, Reguer, S, Bertrand, L. 2016. Strontium speciation in archaeological otoliths. Journal of Analytical Atomic Spectrometry 31(3): 700711.CrossRefGoogle Scholar
Cook, PK, Mocuta, C, Dufour, E, Languille, MA, Bertrand, L. 2018. Full-section otolith microtexture imaged by local-probe X-ray diffraction. Journal of Applied Crystallography 51(4):11821196.CrossRefGoogle Scholar
Cook, PK, Languille, MA, Dufour, E, Mocuta, C, Tombret, O, Fortuna, F, Bertrand, L. 2015. Biogenic and diagenetic indicators in archaeological and modern otoliths: Potential and limits of high definition synchrotron micro-XRF elemental mapping. Chemical Geology 414(1):115.CrossRefGoogle Scholar
Cordeiro, LGM, Belem, AL, Bouloubassi, I, Rangel, B, Sifeddine, A, Capilla, R. 2014. Reconstruction of Southwestern Atlantic sea surface temperatures during the last century: Cabo Frio continental shelf (Brazil). Palaeogeography Palaeoclimatology and Palaeoecology 415(1):225232.CrossRefGoogle Scholar
Costa, MR, Araújo, FG. 2003. Use of a tropical bay in southeastern Brazil by juvenile and subadult Micropogonias furnieri (Perciformes, Sciaenidae). ICES Journal of Marine Science 60(1):268277.CrossRefGoogle Scholar
Costa-Moreira, AL. 1989. Estados tróficos da laguna de Saquarema num ciclo anual [master’s dissertation]. Universidade Federal Fluminense.Google Scholar
Costa-Moreira, AL, Carmouze, JP. 1991. La lagune de Saquarema:Hydroclimatic, seston and éléments biogéniques au cours d’um cycle annuel. Revue d’hydrobiologie tropicale 24(1):1323.Google Scholar
Cotovicz, LC Jr., Knoppers, BA, Brandini, N, Costa Santos, SJ, Abril, G. 2015. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences 12(1):61256146.CrossRefGoogle Scholar
Cotovicz, LC Jr., Knoppers, BA, Deirmendjian, L, Abrila, G. 2019. Sources and sinks of dissolved inorganic carbon in an urban tropical coastal bay revealed by δ13C-DIC signals. Estuarine, Coastal and Shelf Science 220:185195.CrossRefGoogle Scholar
Degens, ET, Deuser, WG, Haedrich, RL. 1969. Molecular structure and composition of fish otoliths. Marine Biology 2(1):104113.CrossRefGoogle Scholar
Dias, R, Estrella-Martínez, J, Butler, P, Nederbragt, A, Hall, IR, Barrulas, P, Maurer, AF, Cardeira, AM, Cleia, JM, Bicho, DN. 2019. Mesolithic human occupation and seasonality: sclerochronology, δ18O isotope geochemistry, and diagenesis verification by Raman and LA-ICP-MS analysis of Argyrosomus regius (meagre) sagittae otoliths from layer 1 of Cabeço da Amoreira Mesolithic shell midden (Muge, Portugal). Archaeological and Anthropological Sciences 11(2):409432.CrossRefGoogle Scholar
Druffel, ERM, Bauer, JE, Griffin, S. 2005. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean. Geochemistry, Geophysics, Geosystems 6(3):n/a–n/a.CrossRefGoogle Scholar
Dufour, E, Cappetta, H, Denis, A, Dauphin, Y, Mariotti, A. 2000. Otolith diagenesis comparing microstructural, mineralogical and geochemical data: application to Pliocene fossils from Southeastern France. Bulletin de la Societe Geologique de France 171(5):521532.CrossRefGoogle Scholar
Dufour, E, Gerdeaux, D, Wurster, CM. 2007. Whitefish (Coregonus lavaretus) respiration rate governs intra-otolith variation of δ13C values in Lake Annecy. Canadian Journal of Fisheries and Aquatic Sciences 64(12):17361746.CrossRefGoogle Scholar
Dufour, E, Neer, WV, Vermeersch, PM, Patterson, WP. 2018. Hydroclimatic conditions and fishing practices at Late Paleolithic Makhadma 4 (Egypt) inferred from stable isotope analysis of otoliths. Quaternary International 47:190202.CrossRefGoogle Scholar
Eichler, PPB, Eichler, BB, Miranda, LB, Pereira, ERM, Kfouri, PBP, Pimenta, FM, Bérgamo, AL, Vilela, CG. 2003. Benthic Foraminiferal response to variations in temperature, salinity, dissolved oxygen and organic carbon, in the Guanabara Bay, Rio de Janeiro, Brazil. Anuário do Instituto de Geociências 26(1):3651.CrossRefGoogle Scholar
Figueiredo, AG Jr., Toledo, MB, Cordeiro, RC, Godoy, JMO, Silva, FT, Vasconcelos, SC, Dos Santos, RA. 2014. Linked variations in sediment accumulation rates and sea-level in Guanabara Bay, Brazil, over the last 6000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 415:8390.CrossRefGoogle Scholar
Figuti, L. 1993. O homem pré-histórico, o molusco e o sambaqui: considerações sobre a subsistência dos povos sambaquianos. Revista do Museu de Arqueologia e Etnologia 3:6780.CrossRefGoogle Scholar
Fish, SK, Deblasis, P, Gaspar, MD, Fish, PR. 2000. Eventos incrementais na construção de sambaquis, litoral do sul do Estado de Santa Catarina. Revista do Museu de Arqueologia e Etnologia 10:6987.CrossRefGoogle Scholar
Franco, TP, Albuquerque, CQ, Santos, RS, Saint’Pierrec, TD, Araujo, FG. 2018. Leave forever or return home? The case of the whitemouth croaker Micropogonias furnieri in coastal systems of Southeastern Brazil indicated by otolith microchemistry. Marine Environmental Research 144(1):2835.CrossRefGoogle ScholarPubMed
Gaspar, MD. 1991. Aspectos da organização social de um grupo de pescadores, coletores e caçadores: Região compreendida entre a Ilha Grande e o delta do Paraíba do Sul, Estado do Rio de Janeiro [doctoral dissertation]. Pós-graduaçao em Arqueologia da Universidade de São Paulo.Google Scholar
Gaspar, MD. 1999. Sambaqui: arqueologia do litoral brasileiro. Rio de Janeiro: Zahar.Google Scholar
Gaspar, MD. 2015. Relatório de Solicitação de Liberação de Área – Programa de resgate do patrimônio arqueológico, histórico e cultural do Rio Galeão da cidade do Rio de Janeiro. Associação Amigos do Museu Nacional. p. 14.Google Scholar
Gaspar, MD, De Blasis, P, Fish, S, Fish, P. 2008. Sambaqui (shell mound) societies of coastal Brazil. Handbook of South American Archaeology 1:319335.CrossRefGoogle Scholar
Gaspar, MD, Klokler, D, Scheel-Ybert, R, Bianchini, GF. 2013. Sambaqui de Amourins: mesmo sítio, perspectivas diferentes. Arqueologia de um sambaqui 30 anos depois. Revista del Museo de Antropología 6:720.CrossRefGoogle Scholar
Gaspar, MD, Klokler, D, Deblasis, P. 2018. Corpos e montes: arquitetura da morte e do modo de vida dos sambaqueiros. Revista Memorare 5:264282.CrossRefGoogle Scholar
Gaspar, MD, Bianchini, GF, Berredo, AL, Lopes, MS. 2019. A ocupação sambaquieira no entorno da Baía de Guanabara. Revista de Arqueologia 32(2):314.CrossRefGoogle Scholar
Gerdeaux, D, Dufour, E. 2012. Inferring occurrence of growth checks in pike (Esox lucius) scales by using sequential isotopic analysis of otoliths. Rapid Communications in Mass Spectrometry 26(7):785792.CrossRefGoogle ScholarPubMed
Giovanni: NASA. 2019. The bridge between data and science v 4.33. Available from: https://giovanni.gsfc.nasa.gov/giovanni/.Google Scholar
Grouard, S. 2010. Caribbean Archaeozoology. In: Mengoni-Goñalons G, Arroyo-Cabrales J, Polaco ÓJ, Aguilar FJ, editors. Current advances in Latin-American Archaeozoology. Xth ICAZ International Conference. Mexico: International Council for Archaeozoology: Universidad de Buenos Aires. p. 89–109.Google Scholar
Haimovici, M, Ignacio, JM. 2005. Micropogonias furnieri (Desmarest, 1823). In: Rossi, CLW, Cergole, MC, Ávila-da-Silva, AO, editors. Análise das principais pescarias comerciais da região Sudeste-Sul do Brasil: Dinâmica Populacional das Espécies em Exploração. Série Documentos Revizee-Score Sul, São Paulo. p. 101107.Google Scholar
Heaton, TJ, Köhler, P, Butzin, M, Bard, E, Reimer, RW, Austin, WEN, Bronk-Ramsey, C, Grootes, PM, Hughen, KA, Kromer, B, Reimer, PJ, Adkins, J, Burke, A, Cook, MS, Olsen, J, Skinner, LC. 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62(4):779820.CrossRefGoogle Scholar
Høie, H, Folkvord, A. 2006. Estimating the timing of growth rings in Atlantic cod otoliths using stable oxygen isotopes. Journal of Fish Biology 68(3):826837.CrossRefGoogle Scholar
Hughen, KA, Baillie, MG, Bard, E, Beck, JW, Bertrand, CJ, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk -Ramsey, C, Reimer, PA, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, Plicht, JV, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–1086.CrossRefGoogle Scholar
Hut, G. 1987. Consultants group meeting on the stable isotope reference samples for geochemical and hydrological investigations. Report to the Director General. Vienna: International Atomic Energy Agency. p. 42.Google Scholar
Jones, DS, Allmon, WD. 1995. Records of upwelling, seasonality and growth in stable-isotope profiles of Pliocene mollusk shells from Florida. Lethaia 28(1):6174.CrossRefGoogle Scholar
Kalas, FA, Carreira, RS, Macko, SA, Wagener, ALR. 2009. Molecular and isotopic characterization of the particulate organic matter from an eutrophic coastal bay in SE Brazil. Continental Shelf Research 29(1):22932302.CrossRefGoogle Scholar
Kaschner, KK, Kesner-Reyes, C, Garilao, J, Rees, Rius-Barile T, Froese, R. 2016. AquaMaps: predicted range maps for aquatic species. Available from: www.aquamaps.org/2016.Google Scholar
Kerr, LA, Secor, DH, Kraus, RT. 2007. Stable isotope (δ13C and δ18O) and Sr/Ca composition of otoliths as proxies for environmental salinity experienced by an estuarine fish. Marine Ecology Progress Series 349:245253.CrossRefGoogle Scholar
Kjerfvee, B, Ribeiro, CHA, Dias, GTM, Filippo, AM, Quaresma, VS. 1997. Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Continental Shelf Research 17(13):16091643.CrossRefGoogle Scholar
Klokler, D. 2016. Animal para toda Obra: fauna ritual em sambaquis. Habitus 14(1):2134.Google Scholar
Kneip, LM, Crancio, F, Francisco, BHR. 1988. O Sambaqui da Beirada (Saquarema, RJ): aspectos culturais e paleoambientais. Revista de Arqueologia 5(1):154.CrossRefGoogle Scholar
Kneip, LM, Pallestrini, L, Crancio, F, Machado, LMC 1991. As estruturas e suas inter-relações em sítios de pescado- res-coletores pré-históricos do litoral de Saquarema. RJ. Boletim do Instituto de Arqueologia Brasileira 5(1):142.Google Scholar
Kneip, LM, Crancio, F, Magalhães, RMM, Curvelo, MA, Mello, EMB, Machado, LC, Mello, CL. 2001. O Sambaqui de Manitiba I e Outros Sambaquis de Saquarema. Documento de Trabalho, série arqueologia 5(1):191.Google Scholar
Lima, TA. 1999–2000. Em busca dos frutos do mar: os pescadores–coletores do litoral centro–sul do Brasil. Revista da Universidade de São Paulo 44(1):270332.Google Scholar
Lopes, MS, Bertucci, TCP, Rapagna, L, Tubino, AR, Monteiro-Neto, C, Tomas, ARG, Tenório, MC, Lima, TA, Souza, R, Carrillo-Brice, JD, Haimovici, M, Macario, K, Carvalho, C, Aguilera, O. 2016. The path towards endangered species: prehistoric fisheries in Southeastern Brazil. PLoS One 11(6):e0154476.CrossRefGoogle ScholarPubMed
Lopes, MS, Grouard, S, Gaspar, MD, Sabadine-Santos, E, Bailon, S, Aguilera, OA. 2022. Middle Holocene marine and land-tetrapod biodiversity recovered from Galeão shell mound, Guanabara Bay, Brazil. Quaternary International 610:8096.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, Souza, R, Aguilera, O, Tenorio, MC, Rapagnã, LC, Douka, K, Silva, E. 2016. The Usiminas shellmound on the Cabo Frio Island: marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology 35:3642.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Trindade, DC, Decco, J, Lima, TA, Aguilera, OA, Marques, NA, Alves, EQ, Oliveira, FM, Chanca, IS, Carvalho, C, Anjos, RM, Pamplona, FC, Silva, EP. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui da Tarioba, Rio de Janeiro, Brazil). Radiocarbon 56(2):489499.CrossRefGoogle Scholar
Martin, L, Suguio, K, Flexor, JM, Dominguez, JML. 1996. Quaternary sealeavel history and variation in dynamics along the central brasilian coast: consequences on coastal plain construction. Anais da Academia Brasileira de Ciências 68:303354.Google Scholar
Mendonça, MLTG, Godoy, JM. 2004. Datação radiocarbônica de sítios arqueológicos do tipo sambaqui pela técnica de absorção de CO2: uma alternativa à síntese benzênica. Química Nova 27:323325.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):10871092.CrossRefGoogle Scholar
Murawski, SA. 1993. Climate change and marine fish distributions: forecasting from historical analogy. Transactions of the American Fisheries Society 122(5):647658.2.3.CO;2>CrossRefGoogle Scholar
Nakamura, I, Inada, T, Takeda, M, Hatanaka, H. 1986. Important fishes trawled off Patagonia. Tokyo: Japan Marine Fishery Resource Research Center.Google Scholar
Nye, JA, Link, JS, Hare, JA, Overholtz, WJ. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Marine Ecology Progress Series 393(1):111129.CrossRefGoogle Scholar
Panfili, J, Pontual, H, Troadec, H, Wright, PJ. 2002. Manual of fish sclerochronology. Brest: IRD Institut Recherche Developpement.Google Scholar
Patterson, WP, Smith, GR, Lohmann, KC. 1993. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. Geophysical Mono 78:191202.Google Scholar
Patterson, WP. 1998. North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeography, Palaeoclimatology, Palaeoecology 138(1–4):271303.CrossRefGoogle Scholar
Pinto, DC. 2009. Concha sobre concha: construindo sambaquis e a paisagem no Recôncavo da Baía de Guanabara [doctoral dissertation]. Museu Nacional da Universidade Federal do Rio de Janeiro.Google Scholar
Pivel, MAG, Toledo, FAL, Costa, KB. 2010. Foraminiferal record of changes in summer monsoon precipitation at the southeastern Brazilian margin since the Last Glacial Maximum. Revista Brasileira de Paleontologia 13(2):7988.CrossRefGoogle Scholar
Price, GD, Wilkinson, D, Hart, MB, Page, KN, Grimes, ST. 2009. Isotopic analysis of coexisting Late Jurassic fish otoliths and molluscs: Implications for upper-ocean water temperature estimates. Geology 37(3):215218.CrossRefGoogle Scholar
Reid, PC, Fischer, AC, Lewis-Brown, E, Meredith, MP, Sparrow, M, Andersson, AJ, Antia, A, Bates, NR, Bathmann, U, Beaugrand, G, Brix, H, et al. 2009. Impacts of the oceans on climate change. Advances in Marine Biology 56:1150.CrossRefGoogle ScholarPubMed
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, T, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):11111150. doi: 10.1017/s0033822200034202 CrossRefGoogle Scholar
R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0. Available at: http://www.R–project.org.Google Scholar
Rodrigues, C, Lavrado, HP, Falcão, APC, Silva, SHG. 2007. Distribuição da ictiofauna capturada em arrastos de fundo na Baía de Guanabara – Rio de Janeiro, Brasil. Arqueologia Museu Nacional 65(2):199210.Google Scholar
Sadovy, Y, Severin, KP. 1994. Elemental patterns in red hind (Epinephelus guttatus) otoliths from Bermuda and Puerto Rico reflect growth rate, not temperature. Canadian Journal of Fisheries and Aquatic Science 51(1):133141.CrossRefGoogle Scholar
Santos, RS, Costa, MR, Araújo, FG. 2017. Age and growth of the white croaker Micropogonias furnieri (Perciformes: Sciaenidae) in a coastal area of Southeastern Brazilian Bight. Neotropical Ichthyology 15(1):e160131.CrossRefGoogle Scholar
Scartascini, FL, Saez, M, Volpedo, AV. 2016. Otoliths as a proxy for seasonality: the case of Micropogonias furnieri from the northern coast of San Matias Gulf, Rio Negro, Patagonia, Argentina. Quaternary International 373:136142.CrossRefGoogle Scholar
Secor, DH, Dean, JM, Laban, EH. 1992. Otolith removal and preparation for microstructural examination. In: Stevenson DK, Campana SE, editors. Otolith microstructure examination and analysis. Canadian Journal of Fisheries and Aquatic Sciences 117:19–57.Google Scholar
Soares-Gomes, A, da Gama, BAP, Baptista-Neto, JA, Freire, DG, Cordeiro, RC, Machado, W, Bernardes, MC, Coutinho, R, Thompson, F, Pereira, RC. 2016. An environmental overview of Guanabara Bay, Rio de Janeiro. Regional Studies in Marine Science, Regional Studies in Marine Science 8(1):319330.CrossRefGoogle Scholar
Souto, DD, Lessa, DVO, Albuquerque, ALS, Sifeddine, A, Turcq, BJ, Barbosa, CF. 2011. Marine sediments from Southeastern brazilian continental shelf: a 1,200-year record of upwelling productivity. Palaeogeography, Palaeoclimatology, Palaeoecology 299(1–2):4955.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363. doi: 10.1017/S0033822200003672.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215230.CrossRefGoogle Scholar
Tenório, MC, Pinto, DC, Afonso, MC. 2008. Dinâmica de ocupação, contatos e trocas no litoral do Rio de Janeiro no período de 4000 a 2000 anos antes do presente. Arquivos do Museu Nacional 66(2):311321.Google Scholar
Thorrold, SR, Campana, SE, Jones, CM, Swart, PK. 1997. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim. 61(1): 29092919.CrossRefGoogle Scholar
Turcq, B, Martin, L, Flexor, JM, Suguio, K, Pierre, C, Tasayco-Ortega, L. 1999. Origin and evolution of the Quaternary coastal plain between Guaratiba and Cabo Frio, State of Rio de Janeiro, Brazil. In: Knoppers BA, Bidone ED, Abrãao JJ, editors. Environmental Geochemistry of Coastal Lagoon Systems of Rio de Janeiro, Brazil. UFF/FINEP, Niterói. p. 25–46.Google Scholar
Vazzoler, AEAM. 1991. Síntese de conhecimentos sobre a biologia da corvina, Micropogonias furnieri (Desmarest, 1823), da costa do Brasil. Atlântica 13(1):5574.Google Scholar
Venancio, IM, Belem, AL, dos Santos, THR, Zucchi, MR, Azevedo, AEG, Capilla, R, Albuquerque, AL. 2014. Influence of continental shelf processes in the water mass balance and productivity from stable isotope data on the Southeastern Brazilian coast. Journal of Marine Systems 139(1):241247.CrossRefGoogle Scholar
Villagran, XS, Klokler, D, Nishida, P, Gaspar, MD, Deblasis, P. 2010. Lecturas Estratigráficas: Arquitectura Funerária Y Depositación De Resíduos En El Sambaquí Jabuticabeira II. Latin American Antiquity 21(2):195216.CrossRefGoogle Scholar
Volpedo, AV, Cirelli, AF. 2006. Otolith chemical composition as a useful tool for sciaenid stock discrimination in the south-western Atlantic. Scientia Marina 70(2):325334.CrossRefGoogle Scholar
World Ocean Atlas. 2018. NOAA National Centers for Environmental Information. Dataset. Available at: https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18.Google Scholar
Wurster, CM, Patterson, WP, Stewart, DJ, Stewart, TJ, Bowlby, JN. 2005. Thermal histories, stress, and metabolic rates of chinook salmon in Lake Ontario: evidence from intra–otolith δ18O and δ13C values and energetics modeling. Canadian Journal of Fisheries and Aquatic Sciences 62(1):700713.CrossRefGoogle Scholar
Supplementary material: File

Samor Lopes et al. supplementary material

Samor Lopes et al. supplementary material

Download Samor Lopes et al. supplementary material(File)
File 33.2 KB