Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:13:00.698Z Has data issue: false hasContentIssue false

Spatial Distribution of 14C in Tree Leaves from Bali, Indonesia

Published online by Cambridge University Press:  11 October 2019

Tamás Varga*
Affiliation:
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, H-4001, P.O. Box 51, Hungary
A J Timothy Jull
Affiliation:
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, H-4001, P.O. Box 51, Hungary Department of Geosciences, University of Arizona, Tucson, AZ85721, USA University of Arizona AMS Laboratory, Tucson, AZ85721, USA
Zsuzsa Lisztes-Szabó
Affiliation:
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, H-4001, P.O. Box 51, Hungary
Mihály Molnár
Affiliation:
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, H-4001, P.O. Box 51, Hungary
*
*Corresponding author. Email: [email protected].

Abstract

The increase of fossil-fuel-derived CO2 in the atmosphere has led to the dilution of the atmospheric radiocarbon concentration, but due to the costly instrumentation, the continuous atmospheric 14C/12C data is incomplete in developing countries, such as in Indonesia. These data give useful information about the level of local and regional fossil emissions. In this study, 14C AMS measurements of local vegetation and woody plant species samples have been used to estimate the rate of fossil-fuel-derived carbon in the plants, which fix the CO2 from the atmosphere by photosynthesis. Evergreen leaf samples were collected in September 2018 on the island of Bali in different, diverse districts in local and urban areas. The samples from the densely populated areas show observable fossil fuel emissions and show that the Δ14C level is close to zero ‰, similar to the natural level.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alessio, M, Anselmi, S, Conforto, L, Improta, S, Manes, F, Manfra, L. 2002. Radiocarbon as a biomarker of urban pollution in leaves of evergreen species sampled in Rome and in rural areas (Lazio-Central Italy). Atmospheric Environment 36:54055416 CrossRefGoogle Scholar
Baydoun, R, Samad, OEL, Nsouli, B, Younes, G. 2015. Measurement of 14C content in leaves near a cement factory in Mount Lebanon. Radiocarbon 57(1):153159 CrossRefGoogle Scholar
Bella, F, Alessio, M, Fratelli, P. 1968. A determination of the half-life of 14C. Il Nuovo Cimento 58B:233246 Google Scholar
Berhanu, TA, Szidat, S, Brunner, D, Satar, E, Schanda, R, Nyfeler, P, Battaglia, M, Steinbacher, M, Hammer, S, Leuenberger, M. 2017. Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland. Atmospheric Chemistry and Physics 17:1075310766.CrossRefGoogle Scholar
Buzinny, M. 2006. Radioactive graphite dispersion in the environment in the vicinity of the Chernobyl Nuclear Power Plant. Radiocarbon 48(3):451458.CrossRefGoogle Scholar
Cook, AC, Hainswort, LJ, Sorey, ML, Evans, WC, Southon, JR. 2001. Radiocarbon studies of plant leaves and tree rings from Mammoth Mountain, CA: a long-term record of magmatic CO2 release. Chemical Geology 177:117131.CrossRefGoogle Scholar
Ewers, FW, Schmid, R. 1981. Longecity of needle fascicles of Pinus longaeva (Bristlecone Pine) and other North American pines. Oecologia 51:107115.CrossRefGoogle ScholarPubMed
Fukumoto, Y, Li, X, Yasuda, Y, Okamura, M, Yamada, K, Kashima, K. 2015. The Holocene environmental changes in southern Indonesia reconstructed from highland caldera lake sediment in Bali Island. Quaternary International 374:1533l.CrossRefGoogle Scholar
Graven, HD 2015. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proceedings of the National Academy of Sciences of the United States of America 112(31):95429545.CrossRefGoogle ScholarPubMed
Janovics, R, Futó, I, Molnár, M. 2018. Sealed tube combustion method with MnO2 for AMS 14C measurement. Radiocarbon 60(5):13471355.CrossRefGoogle Scholar
Janovics, R, Kelemen, DI, Kern, Z, Kapitány, S, Veres, M, Jull, AJT, Molnár, M. 2016. Radiocarbon signal of a low and intermediate level radioactive waste disposal facility in nearby trees. Journal of Environmental Radioactivity 153:1014.CrossRefGoogle ScholarPubMed
Janovics, R, Kern, Z, Güttler, D, Wacker, L, Barnabás, I, Molnár, M. 2013. Radiocarbon impact on a nearby tree of a light-water VVER-type nuclear power plant, Paks, Hungary. Radiocarbon 55(2–3):826832.CrossRefGoogle Scholar
Kuc, T, Zimnoch, M. 1998. Changes of the CO2 sources and sink in polluted urban area (southern Poland) over las decade, deriving from the carbon isotope composition. Radiocarbon 40(1):417423.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observation. Geophysical Research Letters 30(23):2194.CrossRefGoogle Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B (62B):2646 CrossRefGoogle Scholar
Major, I, Haszpra, L, Rinyu, L, Futó, I, Bihari, Á, Hammer, S, Molnár, M. 2018. Temporal variation of atmospheric fossil and modern CO2 excess at a Central European rural tower station between 2008 and 2014. Radiocarbon 60(5):12851299.CrossRefGoogle Scholar
McNeely, R. 1994. Long-term environmental monitoring of 14C levels in the Ottawa region. Environment International 20(5):675679.CrossRefGoogle Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55(2–3):665676.CrossRefGoogle Scholar
National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory, Global Monitoring Division. 2019. Mauna Loa CO2 annual mean data. Dataset: ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_annmean_mlo.txt [accessed 12 June 2019].Google Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(6):36213642.CrossRefGoogle Scholar
Pataki, DE, Randerson, TJ, Wang, W, Herzenach, MK, Grulke, NE. 2010 The carbon isotopic composition of plants and soils as a biomarkers of pollution In: West, JB, Bowen, GJ, Dawson, TE, Tu, KP, editors. Isoscapes: Understanding movement, pattern, and process on Earth through isotope mapping. Dordrecht: Springer. p. 407423.CrossRefGoogle Scholar
Pawelczyk, S, Pazdur, A. 2004. Carbon isotopic composition of tree rings as a tool for biomonitoring CO2 level. Radiocarbon 46(2):701719.CrossRefGoogle Scholar
Pazdur, A, Nakamura, T, Pawelczyk, S, Pawlyta, J, Piotrowska, N, Rakowski, A, Sensula, B, Szczepanek, M. 2007. Carbon isotopes in tree rings: climate and the Suess effect interferences in the last 400 years. Radiocarbon 49(2):775788.CrossRefGoogle Scholar
Povinec, P, Kwong, L.L.W, Kaizer, J, Molnár, M, Nies, H, Palcsu, L, Papp, L, Pham, M.K, Jean-Baptise, P. 2017. Impact of the Fukushima accident on tritium, radiocarbon, and radiocesium levels in seawater of the western North Pacific Ocean: A comparison with pre-Fukushima situation. Journal of Environmental Radioactivity 166:5666.CrossRefGoogle ScholarPubMed
Quarta, G, Rizzo, G.A, D’elia, M, Calcagnile, L. 2007. Spatial and temporal reconstruction of the dispersion of anthropogenic fossil CO2 by 14C AMS measurements of plant material. Nuclear Instruments and Methods in Physics Research B 259:421425.CrossRefGoogle Scholar
Rahayu, H, Haigh, R, Amaratunga, D. 2018 Strategic challenges in development planning for Denpasar City and the coastal urban agglomeration of Sabagita. Procedia Engineering 2012: 13471354.CrossRefGoogle Scholar
Rakowski, AZ. 2011. Radiocarbon method in monitoring of fossil fuel emission. Geochronometria 38(4):314324.CrossRefGoogle Scholar
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, H-A. 2013. Optimization of sealed tube graphitization method for environmental 14C studies using MICADAS. Nuclear Instruments and Methods in Physics Research B 294:270275.CrossRefGoogle Scholar
Shore, JS, Cook, GT. 1995. The 14C content of modern vegetation samples from the flanks of the Katla volcano, Southern Iceland. Radiocarbon 37(2):525529.CrossRefGoogle Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarcon 52(2–3):13711379.CrossRefGoogle Scholar
Stenström, KE, Skog, G, Georgiadou, E, Grenberg, J, Johansson, A. 2011. A guide to radiocarbon units and calculations: Lund University [Sweden], Department of Physics, Division of Nuclear Physics Internal Report LUNFD6(NFFR-3111)/1-17/(2011).Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: Reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122:415417.CrossRefGoogle Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
The International Plant Names Index (IPNI). 2019. Published on the Internet http://www.ipni.org [accessed 1 June 2019].Google Scholar
Varga, T, Barnucz, P, Major, I, Lisztes-Szabó, Zs, Jull, AJT, László, E, Pénzes, J, Molnár, M. 2019. Fossil carbon load in urban vegetation for Debrecen, Hungary. Radiocarbon 61(5). doi:10.1017/RDC.2019.81.CrossRefGoogle Scholar
Varga, T, Major, I, Janovics, R, Kurucz, J, Veres, M, Jull, AJT, Péter, M, Molnár, M. 2018. High-precision biogenic fraction analyses of liquid fuels by 14C AMS at HEKAL. Radiocarbon 60(5):13171325.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, HA. 2010. Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268:976979.CrossRefGoogle Scholar