Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T07:18:13.581Z Has data issue: false hasContentIssue false

Sedimentary, Geochemical and Micropaleontological Responses to Sea Level Variations in the Vitoria Estuary, Espírito Santo

Published online by Cambridge University Press:  06 March 2018

Giseli Modolo Vieira Machado*
Affiliation:
Department of Oceanography and Ecology, Federal University of Espírito Santo.
Alex Cardoso Bastos
Affiliation:
Department of Oceanography and Ecology, Federal University of Espírito Santo, 514 Fernando Ferrari Av., Goiabeiras 29060-900, Vitoria, ES, Brazil
Alex da Silva de Freitas
Affiliation:
Institute of Geoscience/Department of Geology, Fluminense Federal University, Gen. Milton Tavares de Souza Av., Boa Viagem 24210-346, Niterói, RJ, Brazil
Jose Antônio Baptista Neto
Affiliation:
Institute of Geoscience/Department of Geology, Fluminense Federal University, Gen. Milton Tavares de Souza Av., Boa Viagem 24210-346, Niterói, RJ, Brazil
*
*Corresponding author. Email: [email protected].

Abstract

Marine insertion indicators in the Vitoria estuary (ES) revealed relative variations in sea level during the Holocene in three sediment cores. Sedimentological, geochemical (C/N ratio), and paleontological (shells and palynomorphs) analysis and 14C dating associated five sedimentary facies to different estuarine deposits. A C/N ratio <10 at the core base indicated organic matter of marine origin. Moving up the cores to 110–150 cm, an abrupt increase in C/N to 26–63 in every core suggests the sudden entry of higher plants into the estuary, potentially the moment sea level retreated. High continental (10,743 palynomorphs/g) and low marine palynomorph concentrations (323 palynomorphs/g) suggest a primarily continental source even during transgression and at high sea level. Around 8973 cal BP, an open bay already existed in the region of Vitoria. Sea level potentially exceeded the current level around 7110 cal BP. The transgressive maximum was at 5567 cal BP. Marine insertion indicators, such as marine shells, low C/N ratios and foraminiferal linings, did not always respond directly to sea level oscillations. These discrepancies probably result from lateral variations in sedimentary deposits from transport patterns and from variations in organic matter and palynomorph preservation due to differences in river and obstacle proximity.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Current address: Department of Geography, Federal University of Espírito Santo, 514 Fernando Ferrari Av., Goiabeiras 29060-900, Vitoria, ES, Brazil

References

REFERENCES

Albino, J, Girardi, G, Nascimento, AK. 2006. Atlas de Erosão e Progradação Costeira do Litoral do Espírito Santo. In: Muehe D, editor. Atlas de erosão e progradação do litoral brasileiro. Brasília: MMA. p 227264.Google Scholar
Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, Oliveira, F, Chanca, I, Angulo, R. 2015. Radiocarbon reservoir corrections on the Brazilian coast from prebomb marine shells. Quaternary Geochronology 29:3035.CrossRefGoogle Scholar
Angulo, RJ, Souza, MC. 2014. Revisão conceitual de indicadores costeiros de paleoníveis marinhos Quaternários no Brasil. Quaternary and Environmental Geosciences 5(2):132.CrossRefGoogle Scholar
Angulo, RJ, Lessa, GC, Souza, MC. 2006. A critical review of mid- to late- Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25:486506.CrossRefGoogle Scholar
Angulo, RJ, Pessenda, LCR, Souza, MC. 2002. O significado das datações ao 14C na reconstrução de paleo níveis marinhos e na evolução das barreiras Quaternárias do litoral Paranaense. Revista Brasileira de Geociências 32(1):95106.Google Scholar
Angulo, RJ, Lessa, G. 1997. The Brazilian sea level curves: a critical review with emphasis on the curves from Paranaguá and Cananéia regions. Marine Geology 140:141166.CrossRefGoogle Scholar
Bader, RG. 1955. Carbon and nitrogen relations in surface and subsurface marine sediments. Geochimica Cosmochimica Acta 7(5/6):205211.Google Scholar
Baker, RGV, Haworth, RJ. 2000. Smooth or oscillating late Holocene sea level curve? Evidence from the paleo-zoology of fixed biological indicators in east Australia and beyond. Marine Geology 163: 367386.Google Scholar
Bastos, AC, Vilela, CG, Quaresma, VS, Almeida, FK. 2010. Mid to Late- Holocene estuarine infilling processes studied by radiocarbon dates, high resolution seismic and biofácies at Vitoria Bay, ES, southeastern Brazil. Anais da Academia Brasileira de Ciências 82(3):761770.CrossRefGoogle Scholar
Barreto, CF, Baptista Neto, JA, Vilela, CG, Barth, OM. 2015. Palynological studies of Late Holocene Jurujuba Sound sediments (Guanabara Bay), Rio de Janeiro, southeast Brazil. Catena 126:2027.CrossRefGoogle Scholar
Bartholomeu, RL, Barros, MA, Lopes, MRS, Barth, OM, Vilela, CG. 2014. Evolução paleogeográfica da planície costeira da Praia Vermelha, entrada da Baía de Guanabara, Rio de Janeiro, por meio de registros palinológicos. Anuário do Instituto de Geociências 37:92103.Google Scholar
Blott, SJ, Pye, K. 2001. Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26(11):12371248.Google Scholar
Bouillon, S, Dahdouth-Guebas, F, Rao, AVVS, Koedam, N, Dehairs, F. 2003. Sources or organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:3339.Google Scholar
Bouillon, S, Raman, AV, Dauby, P, Dehairs, F. 2002. Carbon and nitrogen stable isotope ratios of subtidal benhic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuarine, Coastal and Shelf Science 54:901913.Google Scholar
Buso, AA Jr, Pessenda, LCR, de Oliveira, PE, Cohen, MCL, Giannini, PCF, Schiavo, J, Rossetti, DF, Volkmer-Ribeiro, C, Oliveira, SMB, Lorente, F, Borotti Filho, MA, Bendassoli, JA, Franca, MC, Guimarães, JTF, Siqueira, G. 2013a. Late Pleistocene and Holocene vegetation, climate dynamics, and Amazonian taxa in the Atlantic Rainforest of Linhares, southeastern Brazil. Radiocarbon 55(3):17471762.Google Scholar
Buso, AA Jr, Pessenda, LCR, de Oliveira, PE, Giannini, PCF, Cohen, MCL, Volkmer-Ribeiro, C, Oliveira, SMB, Favaro, DIT, Rossetti, DF, Lorente, FL. 2013b. From an estuary to a freshwater lake: a paleo-estuary evolution in the context of Holocene sea-level fluctuations, SE Brazil. Radiocarbon 55(3):17351746.Google Scholar
Carvalho, MA, Mendonça Filho, JG, Menezes, TR. 2006. Palynofaceus and sequence stratigraphy of the Aptian-Albian of the Sergipe Basin, Brazil. Sedimentary Geology 192:5774.Google Scholar
Clark, PU, Marshall, SJ, Clarke, GKC, Hostetler, SW, Licciardi, JM, Teller, JT. 2001. Freshwater forcing of abrupt climate change during the last Glaciation. Science 293:283287.Google Scholar
Cohen, MCL, França, MC, Rossetti, DC, Pessenda, LCR, Giannini, PCF, Lorente, FL, Buso, AA Jr, Castro, D, Macario, K. 2014. Landscape evolution during the late Quaternary at the Doce River mouth, Espírito Santo State, Southeastern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 415:4858.CrossRefGoogle Scholar
Costa, ES, Grilo, CF, Wolff, GA, Thompson, A, Figueira, RCL, Neto, RR. 2014. Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of Southern Brazil. Marine Pollution Bulletin 92:259268.Google Scholar
Dominguez, JML, Bittencourt, ACSP, Martin, L. 1983. O papel da deriva litorânea de sedimentos arenosos na cosntrução das planícies costeiras associadas às desembocaduras dos rios São Francisco (SE-AL), Jequitinhonha (BA), doce (ES) e Paraíba do Sul (RJ). Revista Brasileira de Geociências 13(2):98105.Google Scholar
Dominguez, JML, Bittencourt, ACS., Martin, L. 1981. Esquema evolutivo da sedimentação quaternária nas feições deltaicas dos rios São Francisco (SE/AL), Jequitinhonha (BA), Doce (ES) e Paraíba do Sul (RJ). Revista Brasileira de Geociências 11(4):227237.Google Scholar
Drago, T, Freitas, C, Rocha, F, Moreno, J, Cachao, M, Naughton, F, Fradique, C, Araujo, F, Silveira, T, Oliveira, A, Cascalho, J, Fatela, F. 2004. Paleoenvironmental evolution of estuarine systems during the last 14,000 years—the case of Douro Estuary (NW Portugal). Journal of Coastal Research, Special Issue (39):186192.Google Scholar
Erdtman, G. 1960. The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54(4):561564.Google Scholar
Flantua, SGA, Hooghiemstra, H, Vuille, M, Behling, H, Carson, JF, Gosling, WD, Hoyos, I, Ledru, MP, Montoya, E, Mayle, F, Maldonado, A, Rull, V, Tonello, MS, Whitney, BS, González-Arango, C. 2016. Climate variability and human impact on the environment in South America during the last 2000 years: synthesis and perspectives. Climate Past Discussion 11:34753565.Google Scholar
Folk, R, Ward, W. 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27(1):326.Google Scholar
França, MC, Alves, ICC, Castro, DF, Cohen, MCL, Rossetti, DF, Pessenda, LCR, Lorente, FL, Fontes, NA, Buso, AA Jr, Giannini, PCF, Francisquini, MI. 2015. A multi-proxy evidence for the transition from estuarine mangroves to deltaic freshwater marshes, Southeastern Brazil, due to climatic and sea-level changes during the late Holocene. Catena 128:55166.Google Scholar
Freitas, AS, Barreto, CF, Barth, OM, Bastos, AC, Baptista Neto, J A. 2016. Late Holocene palynological record and landscape change from the Piraquê-Açu and Piraquê-Mirim estuarine system, Espírito Santo, Brazil. Journal of Sedimentary Environments 1:171183.Google Scholar
Goodman, B, Reinhardt, E, Dey, H, Boyce, J, Schwarcz, H, Sahoglu, V, Erkanal, H, Artzy, M. 2008. Evidence for Holocene marine transgression and shoreline progradation due to barrier development in Iskele, Bay of Izmir, Turkey. Journal of Coastal Research 24(5):12691280.Google Scholar
Grilo, CF, Neto, RR, Vicente, MA, Castro, EVR, Figueira, RCL, Carreira, RS. 2013. Evaluation of the influence of urbanization processes using mangrove and fecal markers in recent organic matter in a tropical tidal flat estuary. Applied Geochemistry 38:8291.Google Scholar
Hatushika, RS, Silva, CG, Mello, CL. 2007. Sismoestratigrafia de alta resolução no lago Juparanã, Linhares (ES – Brasil) como base para estudos sobre a sedimentação e tectônica Quaternária. Revista Brasileira de Geofísica 25(4):433442.Google Scholar
Lahijani, H, Tavakoli, V, Hosseindoost, M. 2007. History of Caspian Environmental changes by molluscan stable isotope records. Journal of Coastal Research, Special Issue 50:438442.Google Scholar
Lamb, AL, Wilson, GP, Leng, MJ. 2006. A review of coastal paleoclimate and relative paleo sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Science Reviews 75:2957.Google Scholar
Lessa, GC. 2005. Baías brasileiras: grandes estuários em uma costa regressiva? In: X Congresso da Associação Brasileira de Estudos do Quaternário. Guarapari, CD-ROM.Google Scholar
Lessa, GC, Angulo, RJ. 1998. Oscillations or not oscillations, that is the question—reply. Marine Geology 150:189196.Google Scholar
Lewis, SE, Sloss, CR, Murray-Wallace, CV, Woodrofee, CD, Smithers, SG. 2012. Post-glacial sea-level changes around the Australian margin: a review. Quaternary Science Reviews 74:115138.Google Scholar
Lorente, FL, Pessenda, LCR, Obooh-Ikuenobe, F, Buso, AA Jr, Cohen, MCL, Meyer, KEB, Giannini, PCF, Oliveira, PE, Rosseti, DF, Borotti Filho, MA, França, MC, Castro, DC, Bendassoli, JA, Macario, K. 2014. Palynofacies and stable C and N isotopes of Holocene sediments from Lake Macuco (Linhares, Espírito Santo, southeastern Brazil): depositional settings and palaeoenvironmental evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 415:6982.Google Scholar
Machado, GMV, Albino, J, Leal, AP, Bastos, AC. 2016. Quartz grain assessment for reconstructing the coastal palaeoenvironment. Journal of South American Earth Sciences 70:353367.Google Scholar
Machado, GMV. 2014. Sedimentologia e estratigrafia Quaternária dos depósitos costeiros da região de Vitória, ES [doctoral thesis]. Programa de Pós-Graduação em Oceanografia Ambiental, Universidade Federal do Espírito Santo, Vitória.Google Scholar
Martin, L. 2003. Holocene sea-level history long eastern-southeastern Brazil. Anuário do Instituto de Geociencias 26:1324.Google Scholar
Martin, L, Bittencourt, ACSP, Dominguez, JML, Flexor, JM, Suguio, K. 1998. Oscillations or not oscillations that is the question: comment on [Angulo R. L., Lessa G. C. “The Brazilian sea-level curves: a critical review with emphasis on the curves from the Paranagua and Cananeia regions” Mar. Geol. 140, 141–166]. Marine Geology 150:179187.Google Scholar
Martin, L, Suguio, K, Dominguez, JML, Flexor, JM. 1997. Geologia do Quaternário Costeiro do Litoral Norte do Rio de Janeiro e do Espírito Santo. São Paulo: CPRM e FAPESP. 112 p.Google Scholar
Martin, L, Suguio, K, Flexor, JM, Archanjo, JD. 1996. Coastal Quaternary formations of the southern part of the State of Espírito Santo (Brazil). Anais da Academia Brasileira de Ciências 68(3):389404.Google Scholar
Martin, L, Flexor, JM, Suguio, K. 1995. Vibrotestemunhador leve: construção, utilização e potencialidades. Revista IG 16(1/2):5966.Google Scholar
Martin, L, Fournier, M, Mourguiart, P, Sifeddine, A, Turcq, B, Absy, ML, Flexor, JM. 1993. Oscillation signal in South American paleoclimatic data of the last 7000 years. Quaternary Research 39:338346.Google Scholar
Martin, L, Suguio, K. 1992. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Paleogeography, Paleoclimatology, Paleoecology 99(1–2):119140.CrossRefGoogle Scholar
Martínez, S, Mahiques, MM, Burone, L. 2013. Mollusks as indicators of historical changes in an estuarine-lagoonal system (Cananéia-Iguape, SE Brazil). The Holocene 23(6):888897.Google Scholar
McCarthy, F, Tiffin, S, Sarvis, A, McAndrews, J, Blasco, S. 2012. Early Holocene brackish closed basin conditions in Georgian Bay, Ontario, Canada: microfossil (thecamoebian and pollen) evidence. Journal of Paleolimnology 47:429445.Google Scholar
Medeanic, S, Torgan, LC, Clerot, LCP, dos Santos, C. 2009. Holocene marine transgression in the coastal plain of Rio Grande do Sul, Brazil: Palynomorph and Diatom evidence. Journal of Coastal Research 25(1):224233.Google Scholar
Meyers, PA. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 144:289302.Google Scholar
Miller, CS, Leroy, SAG, Izon, G, Lahijani, HAK, Marret, F, Cundy, AB, Teasdale, PA. 2013. Palynology: a tool to identify abrupt events? An example from Chabahar Bay, southern Iran. Marine Geology 337:195201.Google Scholar
Milne, GA, Long, AJ, Bassett, SE. 2005. Modelling Holocene relative sea-level observations from the Caribben and South America. Quaternary Science Reviews 24:11851202.Google Scholar
Mourelle, D, Prieto, AR, Pérez, L, García-Rodríguez, F, Borel, CM. 2015. Mid and late Holocene multiproxy analysis of environmental changes linked to sea-level fluctuation and climate variability of the Río de la Plata estuary. Palaeogeography, Palaeoclimatology, Palaeoecology 421:7588.Google Scholar
Murray-Wallce, CV, Woodroffe, CD. editors. 2014. Quaternary Sea-Level Changes: A Global Perspective. New York: Cambridge University Press. 484 p.Google Scholar
Pereira, SD, Chaves, HAF, Santos, SB dos. 2007. Evidence of sea level change at Guaratiba Mangrove, Sepetiba Bay, Brazil. Journal of Coastal Research, Special Issue 50:10971100.Google Scholar
Perez-Arlucea, M, Alvarez-Iglesias, P, Rubio, B. 2007. Holocene evolution of estuarine and tidal-flat sediments in San Simon Bay, Galicia, NW Spain. Journal of Coastal Research Special Issue 50:163167.Google Scholar
Pienkowski, AJ, Mudie, PJ, England, JH, Smith, JN, Furze, MFA. 2011. Late Holocene environmental conditions in Coronation Gulf, southwestern Canadian Arctic Archipelago: evidence from dinoflagellate cysts, other non-pollen palynomorphs, and pollen. Journal of Quaternary Science 26(8):839853.Google Scholar
Ribeiro, PC. 2011. Vermetídeos em costões rochosos de Guarapari, ES: contribuição para o estudo do nível relativo do mar e da circulação marinha no Holoceno. Monografia de Graduação . Instituto de Geociências, Universidade de São Paulo, São Paulo. 83 p.Google Scholar
Rios, EC. 2009. Compendium of Brazilian Sea Shells. Rio Grande: Evangraf. 668 p.Google Scholar
Rigo, D. 2004. Análise do escoamento em regiões estuarinas com manguezais—medições e modelagem na baía de Vitória, ES [doctoral thesis]. Programa de Pós-Graduação em Engenharia Oceânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro.Google Scholar
Rossetti, DF, Polizel, SP, Cohen, MCL, Pessenda, LCR. 2015. Late Pleistocene–Holocene evolution of the Doce River delta, southeastern Brazil: implications for the understanding of wave-influenced deltas. Marine Geology 367:171190.Google Scholar
Rossetti, DF. 2008. Ambientes estuarinos. In: Silva AJCLP, Aragão MANF, Magalhães AJC, editors. Ambientes de sedimentação siliciclástica do Brasil. São Paulo: Beca-BALL Edições.Google Scholar
Stancliffe, RPW. 1996. Microforaminiferal linings. In: Jansonius J, Macgregor DC, editors. Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation. p 373379.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615621.Google Scholar
Salgado-Laboriau, ML. 2001. Reconstruindo as comunidades vegetais e o clima no passado. Humanidades 48:2440.Google Scholar
Sobrino, CM, García-Moreiras, I, Castro, Y, Carreño, NM, de Blas, E, Rodríguez, CF, Judd, A, García-Gil, S. 2014. Climate and anthropogenic factors influencing an estuarine ecosystem from NW Iberia: new high resolution multiproxy analyses from San Simón Bay (Ría de Vigo). Quaternary Science Reviews 93:1133.Google Scholar
Souza, VS Jr, Vidal-Torrado, P, Tessler, MG, Pessenda, LCR, Ferreira, TO, Otero, XL, Macías, F. 2007. Evolução Quaternária, distribuição de partículas nos solos e ambientes de sedimentação em manguezais do estado de São Paulo. R. Bras. Ci. Solo 31:753769.Google Scholar
Suguio, K, Martin, L, Bittencourt, ACSP, Dominguez, JML, Flexor, JM, Azevedo, AEG. 1985. Flutuações do nível relativo do mar durante o quaternário superior ao longo do litoral brasileiro e suas implicações na sedimentação costeira. Revista Brasileira de Geociências 15(4):275286.Google Scholar
Suguio, K, Martin, L. 1981. Significance of quaternary sea-level fluctuations for delta construction along the Brazilian Coast. Geo-Marine Letters 1:181185.Google Scholar
Traverse, A. 2008. Paleopalynology, 2nd edition Springer. 813 p.Google Scholar
Trog, C, Höfer, D, Frenzel, P, Camacho, S, Schneider, H, Mäusbacher, R. 2013. A multi-proxy reconstruction and comparison of Holocene palaeoenvironmental changes in the Alvor and Alcantarilha estuaries (southern Portugal). Revue de Micropaléontologie 56:131158.Google Scholar
Uéara, RS, Duleba, W, Petri, S, Mahiques, MME, Rodrigues, M. 2007. Micropaleontologia e sedimentologia aplicadas aa anlaise paleoambiental: um estudo de caso em Cananeia, São Paulo, Brasil. Revista Brasileira de Paleontologia 10(3):137150.Google Scholar
Van Soelen, EE, Brooks, GR, Larson, RA, Sinninghe Damsté, JS, Reichart, GJ. 2012. Mid to Late Holocene coastal environmental changes in southwest Florida, USA. The Holocene 22(8):929938.Google Scholar
Veronez, P Jr, Bastos, AC, Pizzin, BF, Gava, RD, Quaresma, VS, Silva, CG. 2009a. Sonar de varredura lateral e sísmica de alta resolução aplicados no estudo de ecofácies na baía de Vitória-ES. Revista Brasileira de Geofísica 27(3):411425.Google Scholar
Veronez, P Jr, Bastos, AC, Quaresma, VS. 2009b Morfologia e distribuição sedimentar em um Sistema Estuarino Tropical: Baía de Vitória, ES. Revista Brasileira de Geofísica 27(4):609624.Google Scholar
Wentworth, CK. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30(5):30.Google Scholar
Wartenberg, W, Freund, H. 2012. Late Pleistocene and Holocene sedimentary record within the Jade Bay, Lower Saxony, Northwest Germany and new aspects for the palaeo-ecological record. Quaternary International 251:3141.Google Scholar
Ybert, JP, Salgado-Laboriau, ML, Barth, OM, Lorscheiter, ML, Barros, MA, Chaves, SAM, Luz, CFP, Ribeiro, M, Scheel, R, Vicentini, K. 1992. Sugestões para padronização da metodologia empregada em estudos palinológicos do Quaternário. Revista do Instituto Geológico de São Paulo 13:4749.CrossRefGoogle Scholar