Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T01:03:49.731Z Has data issue: false hasContentIssue false

Seasonal and Diurnal Variations in Atmospheric and Soil Air 14CO2 in a Boreal Scots Pine Forest

Published online by Cambridge University Press:  08 November 2017

V Palonen*
Affiliation:
Department of Physics, University of Helsinki, Finland Radiocarbon Analytics Finland (RACAF)
J Pumpanen
Affiliation:
Department of Forest Sciences, University of Helsinki, Finland Department of Environmental and Biological Sciences, University of Eastern Finland
L Kulmala
Affiliation:
Department of Forest Sciences, University of Helsinki, Finland
I Levin
Affiliation:
Institut für Umweltphysik, Heidelberg University, INF 229, 69120 Heidelberg, Germany
J Heinonsalo
Affiliation:
Department of Food and Environmental Sciences, University of Helsinki, Finland
T Vesala
Affiliation:
Department of Physics, University of Helsinki, Finland Department of Forest Sciences, University of Helsinki, Finland
*
*Corresponding author. Email: [email protected].

Abstract

We present a radiocarbon (14C) dataset of tropospheric air CO2, forest soil air CO2, and soil CO2 emissions over the course of one growing season in a Scots pine forest in southern Finland. The CO2 collection for 14C accelerator mass spectrometry (AMS) analysis was done with a portable, suitcase-sized system, using molecular sieve cartridges to selectively trap CO2. The piloting measurements aimed to quantify the spatial, seasonal and diurnal changes in the 14C content of CO2 in a northern forest site. The atmospheric samples collected above the canopy showed a large seasonal variation and an 11‰ difference between day and nighttime profiles in August. The higher Δ14C values during night are partly explained by a higher contribution of 14C-elevated soil CO2, accumulating in the nocturnal boundary layer when vertical mixing is weak. We observed significant seasonal trends in Δ14C-CO2 at different soil depths that reflected changes in the shares of autotrophic and heterotrophic respiration. Also the observed diurnal variation in the Δ14C values in soil CO2 highlighted the changes in the origin of CO2, with root activity decreasing more for the night than decomposition.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boone, RD, Nadelhoffer, KJ, Canary, JD, Kaye, JP. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature. DOI: 10.1038/25119.Google Scholar
Ekblad, A, Boström, B, Holm, A, Comstedt, D. 2005. Forest soil respiration rate and d13C Is regulated by recent above ground weather conditions. Oecologia 143(1):136142 DOI: 10.1007/s00442-004-1776-z.Google Scholar
Epron, D, Farque, L, Lucot, E, Badot, P-M. 1999. Soil CO2 efflux in a beech forest: the contribution of root respiration. Annals of Forest Science 56(4):289295 DOI: 10.1051/forest:19990403.CrossRefGoogle Scholar
Epron, D, Bahn, M, Derrien, D, Lattanzi, FA, Pumpanen, J, Gessler, A, Högberg, P, et al. 2012. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiology. DOI: 10.1093/treephys/tps057.CrossRefGoogle Scholar
FAO. 1990. FAO/Unesco Soil Map of the World, Revised Legend, with Corrections and Updates. World Soil Resources Report 60. Rome. http://www.fao.org/fileadmin/user_upload/soils/docs/isricu_i9264_001.pdf.Google Scholar
Garratt, JR. 1992. The Atmospheric Boundary Layer. Cambridge University Press.Google Scholar
Gaudinski, JB, Trumbore, SE, Eric, A, Zheng, S. 2000. Soil Carbon Cycling in a Temperate Forest: Radiocarbon-Based Estimates of Residence Times. Sequestration Rates and Partitioning of Fluxes, p 3369.Google Scholar
Hanson, PJ, Edwards, NT, Garten, CT, Andrews, JA. 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48(1):115146 DOI: 10.1023/A:1006244819642.CrossRefGoogle Scholar
Hari, P, Kulmala, M. 2005. Station for measuring ecosystem-atmosphere relations: SMEAR. Boreal Environment Research 10:314322 DOI: 10.1007/978-94-007-5603-8_9.Google Scholar
He, Y, Trumbore, SE, Torn, MS, Harden, JW, Vaughn, LJS, Allison, SD, Randerson, JT. 2016. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353(6306):14191424 DOI: 10.1126/science.aad4273.CrossRefGoogle Scholar
Heinemeyer, A, Hartley, IP, Evans, SP, Carreira De La Fuente, JA, Ineson, P. 2007. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology 13(8):17861797 DOI: 10.1111/j.1365-2486.2007.01383.x.CrossRefGoogle Scholar
Heinonsalo, J, Pumpanen, J, Rasilo, T, Hurme, K-R, Ilvesniemi, H. 2010. Carbon partitioning in ectomycorrhizal Scots pine seedlings. Soil Biology and Biochemistry. DOI: 10.1016/j.soilbio.2010.06.003.CrossRefGoogle Scholar
Heinonsalo, J, Sun, H, Santalahti, M, Bäcklund, K, Hari, P, Pumpanen, J, Post, WM, et al. 2015. Evidences on the ability of mycorrhizal genus piloderma to use organic nitrogen and deliver it to Scots pine. Edited by Erika Kothe. PLOS ONE 10(7Public Library of Science e0131561 DOI: 10.1371/journal.pone.0131561.Google Scholar
Högberg, P, Nordgren, A, Buchmann, N, Taylor, AFS, Ekblad, A, Högberg, MN, Nyberg, G, Ottosson-Löfvenius, M, Read, DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411(6839):789792 DOI: 10.1038/35081058.CrossRefGoogle ScholarPubMed
Högberg, P, Read, DJ. 2006. Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution 21(10):548554 DOI: 10.1016/j.tree.2006.06.004.CrossRefGoogle ScholarPubMed
Ilvesniemi, H, Liu, C. 2001. Biomass distribution in a young Scots pine stand. Boreal Env. Res 6:38.Google Scholar
Ilvesniemi, H, Pumpanen, J, Duursma, R, Hari, P, Keronen, P, Kolari, P, Kulmala, M, et al. 2010. Water balance of a Boreal Scots pine forest. Boreal Environment Research 15(4):375396.Google Scholar
Kieloaho, A-J, Pihlatie, M, Carrasco, MD, Kanerva, S, Parshintsev, J, Riekkola, M-L, Pumpanen, J, Heinonsalo, J. 2016. Stimulation of soil organic nitrogen pool: the effect of plant and soil organic matter degrading enzymes. Soil Biology and Biochemistry 96:97106 DOI: 10.1016/j.soilbio.2016.01.013.CrossRefGoogle Scholar
Kodama, N, Barnard, RL, Salmon, Y, Weston, C, Ferrio, JP, Holst, J, Werner, RA, et al. 2008. Temporal dynamics of the carbon isotope composition in a Pinus Sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide. Oecologia 156(4):737750 DOI: 10.1007/s00442-008-1030-1.CrossRefGoogle Scholar
Kolari, P, Pumpanen, J, Rannik, Ü, Ilvesniemi, H, Hari, P, Berninger, F. 2004. Carbon balance of different aged Scots pine forests in southern Finland. Global Change Biology 10(7):11061119 DOI: 10.1111/j.1529-8817.2003.00797.x.CrossRefGoogle Scholar
Kolari, P, Kulmala, L, Pumpanen, J, Launiainen, S, Ilvesniemi, H, Hari, P, Nikinmaa, E. 2009. CO2 exchange and component CO2 fluxes of a Boreal Scots pine forest. Boreal Environment Research 14(August):761783.Google Scholar
Konôpka, B, Yuste, JC, Janssens, IA, Ceulemans, R. 2005. Comparison of fine root dynamics in Scots pine and pedunculate oak in sandy soil. Plant and Soil 276(1–2):3345 DOI: 10.1007/s11104-004-2976-3.CrossRefGoogle Scholar
Korhonen, JFJ, Pihlatie, M, Pumpanen, J, Aaltonen, H, Hari, P, Levula, J, Kieloaho, A-J, Nikinmaa, E, Vesala, T, Ilvesniemi, H. 2013. Nitrogen balance of a Boreal Scots pine forest. Biogeosciences 10(2):10831095 DOI: 10.5194/bg-10-1083-2013.CrossRefGoogle Scholar
Kuzyakov, Y. 2006. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry 38(3):425448 DOI: 10.1016/j.soilbio.2005.08.020.CrossRefGoogle Scholar
LaFranchi, BW, McFarlane, KJ, Miller, JB, Lehman, SJ, Phillips, CL, Andrews, AE, Tans, PP, et al. 2016. Strong regional atmospheric 14C signature of respired CO2 observed from a tall tower over the Midwestern United States. Journal of Geophysical Research: Biogeosciences 121(8):22752295 DOI: 10.1002/2015JG003271.CrossRefGoogle Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980 DOI: 10.2458/azu_js_rc.42.3855.Google Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62(1):2646 DOI: 10.1111/j.1600-0889.2009.00446.x.CrossRefGoogle Scholar
Levin, I, Kromer, B, Hammer, S. 2013. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65. (March). DOI: 10.3402/tellusb.v65i0.20092.CrossRefGoogle Scholar
Lindén, A, Heinonsalo, J, Buchmann, N, Oinonen, M, Sonninen, E, Hilasvuori, E, Pumpanen, J. 2014. Contrasting effects of increased carbon input on boreal som decomposition with and without presence of living root system of Pinus Sylvestris L. Plant and Soil 377(1–2):145158 DOI: 10.1007/s11104-013-1987-3.CrossRefGoogle Scholar
Lingenfelter, RE. 1963. Production of carbon 14 by cosmic-ray neutrons. Reviews of Geophysics 1(1):35 DOI: 10.1029/RG001i001p00035.CrossRefGoogle Scholar
Liski, J, Ilvesniemi, H, Mäkelä, A, Starr, M. 1998. Model analysis of the effects of soil age, fires and harvesting on the carbon storage of Boreal forest soils. European Journal of Soil Science 49(3):407416 DOI: 10.1046/j.1365-2389.1998.4930407.x.Google Scholar
Mencuccini, M, Hölttä, T. 2010. The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytologist. DOI: 10.1111/j.1469-8137.2009.03050.x.CrossRefGoogle Scholar
Minkkinen, K, Laine, J, Shurpali, NJ, Mäkiranta, P, Alm, J, Penttilä, T. 2007. Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environment Research 12(2):115126.Google Scholar
Naegler, T, Levin, I. 2009aBiosphere-atmosphere gross carbon exchange flux and the δ13CO2 and Δ14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory. Journal of Geophysical Research 114(D17):D17303 DOI: 10.1029/2008JD011116.CrossRefGoogle Scholar
Naegler, T, Levin, I. 2009b. Observation-based global biospheric excess radiocarbon inventory 1963–2005. Journal of Geophysical Research 114(D17):D17302 DOI: 10.1029/2008JD011100.CrossRefGoogle Scholar
Palonen, V. 2013. Molecular sieves in 14CO2 sampling and handling. Radiocarbon 55(3–4):416420 DOI: 10.2458/azu_js_rc.55.16335.Google Scholar
Palonen, V. 2015. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements. Review of Scientific Instruments 86(12AIP Publishing 125101 DOI :10.1063/1.4936291.CrossRefGoogle ScholarPubMed
Pedersen, AR, Petersen, SO, Schelde, K. 2010. A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. European Journal of Soil Science 61(6):888902 DOI: 10.1111/j.1365-2389.2010.01291.x.Google Scholar
Phillips, CL, McFarlane, KJ, Risk, D, Desai, AR. 2013. Biological and physical influences on soil 14CO2 seasonal dynamics in a temperate hardwood forest. Biogeosciences 10(12Copernicus GmbH 79998012 DOI: 10.5194/bg-10-7999-2013.Google Scholar
Phillips, CL, McFarlane, KJ, LaFranchi, B, Desai, AR, Miller, JB, Lehman, SJ. 2015. Observations of 14CO2 in ecosystem respiration from a temperate deciduous forest in northern Wisconsin. Journal of Geophysical Research: Biogeosciences 120(4):600616 DOI: 10.1002/2014JG002808.CrossRefGoogle Scholar
Pihlatie, M, Pumpanen, J, Rinne, J, lvesniemi, H, Simojoki, a, Hari, P, Vesala, T. 2007. Gas concentration driven fluxes of nitrous oxide and carbon dioxide in Boreal forest soil. Tellus Series B-Chemical and Physical Meteorology 59(3):458469 DOI: 10.1111/j.1600-0889.2007.00278.x.Google Scholar
Pumpanen, JS, Heinonsalo, J, Rasilo, T, Hurme, K-R, Ilvesniemi, H. 2009. Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce, and silver birch seedlings determined with gas exchange measurements and 14C pulse labelling. Trees 23(3):611621 DOI: 10.1007/s00468-008-0306-8.CrossRefGoogle Scholar
Pumpanen, J, Kulmala, L, Lindén, A, Kolari, P, Nikinmaa, E, Hari, P. 2015. Seasonal dynamics of autotrophic respiration in Boreal forest soil estimated by continuous chamber measurements. Boreal Environment Research 20(5):637650.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304.Google Scholar
Savage, K, Davidson, EA, Tang, J. 2013. Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Global Change Biology 19(4):11511159 DOI: 10.1111/gcb.12108.Google Scholar
Slota, PJ, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29:303 DOI: 10.2458/azu_js_rc.29.1051.Google Scholar
Stuiver, M, Polach, HA. 1977. Reporting of carbon-14 data. Radiocarbon 19(3):355363.Google Scholar
Trumbore, SE. 1993. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles 7(2):275290 DOI: 10.1029/93GB00468.CrossRefGoogle Scholar
Valentini, R, Matteucci, G, Dolman, AJ, Schulze, E-D, Rebmann, C, Moors, EJ, Granier, A, et al. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404(6780):861865 DOI: 10.1038/35009084.CrossRefGoogle ScholarPubMed