Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T01:13:38.116Z Has data issue: false hasContentIssue false

Sample Throughput and Data Quality at the Leibniz-Labor AMS Facility

Published online by Cambridge University Press:  18 July 2016

M.-J. Nadeau
Affiliation:
Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität Max-Eyth Str. 11–13, 24118 Kiel, Germany
P. M. Grootes
Affiliation:
Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität Max-Eyth Str. 11–13, 24118 Kiel, Germany
Markus Schleicher
Affiliation:
Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität Max-Eyth Str. 11–13, 24118 Kiel, Germany
Peter Hasselberg
Affiliation:
Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität Max-Eyth Str. 11–13, 24118 Kiel, Germany
Anke Rieck
Affiliation:
Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität Max-Eyth Str. 11–13, 24118 Kiel, Germany
Malte Bitterling
Affiliation:
Leibniz-Labor für Altersbestimmung und Isotopenforschung, Christian-Albrechts-Universität Max-Eyth Str. 11–13, 24118 Kiel, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since our first report on the performance of the Kiel accelerator mass spectrometry (AMS) system and our early work on sample preparation, systems have been built to improve the sample quality and throughput of the laboratory. Minor modifications were also made on the AMS system, mainly in order to reduce the amount of work and time needed to maintain the system in optimal condition. The design and performance of a 20-port reduction system, a pneumatic target press, and a remote alarm unit for the AMS system are discussed, along with an overview of the results obtained during the last year and the procedure used to obtain them. Statistical analysis shows that the contribution of the AMS system to the measuring uncertainty at our current level (0.3% for a modern sample) is negligible.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Aerts-Bijma, A. Th., Meijer, H. A. J. and van der Plicht, J. 1997 AMS sample handling in Groningen. Nuclear Instruments and Methods in Physics Research B123 221–225.Google Scholar
Cohen, G. J., Hutton, D. L., Osborne, E. A., von Reden, K. F., Gagnon, A. R., McNichol, A.P. and Jones, G. A. 1994 Automated sample processing at the National Ocean Sciences AMS Facility. Nuclear Instruments and Methods in Physics Research B92: 129133.CrossRefGoogle Scholar
Currie, L. A. 1994 Optimal estimation of uncertainty interval for accelerator and decay counting. Nuclear Instruments and Methods in Physics Research B92: 188193.CrossRefGoogle Scholar
Donahue, D. J., Jull, A. J. T., Linick, T. W., Hatheway, A., Toolin, L. J., Gore, B. and Damon, P. E. 1987 Nuclear Instruments and Methods in Physics Research B29: 169172.CrossRefGoogle Scholar
Gottdang, A., Mous, D. J. W. and van der Plicht, J. 1995 The HVEE 14C system at Groningen. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 649656.Google Scholar
Nadeau, M.-J., Schleicher, M., Grootes, P. M., Erlenkeuser, H., Gottdang, A., Mous, D. J. W., Sarnthein, J. M. and Willkomm, H. 1997 The Leibniz-Labor AMS facility at the Christian-Albrechts-University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research B123: 2230.Google Scholar
Purser, K. H. 1992 A high throughput 14C accelerator mass spectrometer. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radio-carbon 34(3): 458467.Google Scholar
Purser, K. H., Smick, T. H., Litherland, A. E., Beukens, R. P., Kieser, W. E. and Kilius, L. R. 1988 A third generation 14C accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B35: 284291.Google Scholar
von Reden, K. F., Jones, G. A., Schneider, R. J., McNichol, A. P., Cohen, G. J. and Purser, K. H. 1992 The new National Ocean Science Accelerator Mass Spectrometer facility at the Woods Hole Oceanographic Institution: Progress and first results. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 478482.Google Scholar
von Reden, K. F., Schneider, R. J., Cohen, G. J. and Jones, G. A. 1994 Performance characteristics of the 3 MV Tandetron AMS system at the National Ocean Science AMS facility. Nuclear Instruments and Methods in Physics Research B92: 711.Google Scholar
Schleicher, M., Grootes, P. M., Nadeau, M.-J. and Schoon, A. 1998 The carbonate 14C background and its components at the Leibniz AMS facility. Radiocarbon, this issue.Google Scholar
Vogel, J. S., Southon, J. R., Nelson, D. E. and Brown, T.A. 1984 Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B5: 289.Google Scholar