Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T01:25:13.221Z Has data issue: false hasContentIssue false

RELIABILITY OF AMS 14C DATES OF MOSS TEMPER PRESERVED IN NEOLITHIC POTTERY FROM THE SCHELDT RIVER VALLEY (BELGIUM)

Published online by Cambridge University Press:  10 January 2020

Dimitri Teetaert*
Affiliation:
Ghent University, Department of Archaeology, Ghent, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Brussels, Belgium
Eric Goemaere
Affiliation:
Geological Survey of Belgium, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Philippe Crombé
Affiliation:
Ghent University, Department of Archaeology, Ghent, Belgium
*
*Corresponding author. Email: [email protected]

Abstract

Direct dates of pottery obtained from food crusts or other organic residues on the vessel surfaces can be affected by a reservoir effect and/or an old wood effect and therefore be unreliable. Hence, there is a need for alternative ways to directly date pottery. Moss is used as temper by several cultural groups of the late 6th to early 4th millennium cal BC in northwestern Europe. After the pottery is fired, charred moss remains are often preserved in the clay, so that relatively short-lived plant material with a direct chronological link to the pottery and human occupation is available for radiocarbon (14C) dating. In this study, charred moss temper is extracted for accelerator mass spectrometry (AMS) 14C dating from pottery of the Swifterbant Culture and Spiere group in the Scheldt river valley (Belgium). The moss dates are then compared to reference dates of organic macro-remains from the same sites and food crust dates with or without a reservoir effect of the same pottery. Eleven out of 13 moss dates are in line with the expected pottery age. The paired dates of moss temper and food crusts from the same potsherds confirm a freshwater reservoir effect (FRE) for the latter. We conclude that moss temper has great potential as a sample material for direct pottery dating. However, more research on the extraction and pretreatment of moss temper as well as on the reliability of moss dates is necessary in the future.

Type
Conference Paper
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 9th Radiocarbon & Archaeology Symposium, Athens, GA, USA, 20–24 May 2019

References

REFERENCES

Arobba, D, Panelli, C, Caramiello, R, Gabriele, M, Maggi, R. 2017. Cereal remains, plant impressions and 14C direct dating from the Neolithic pottery of Arene Candide Cave (Finale Ligure, NW Italy). Journal of Archaeological Science: Reports 12:395404.CrossRefGoogle Scholar
Bollong, CA, Vogel, JC, Jacobson, L, van der Westhuizen, WA, Sampson, CG. 1993. Direct dating and identity of fibre temper in Pre-Contact Bushman (Basarwa) pottery. Journal of Archaeological Science 20:4155.CrossRefGoogle Scholar
Bonsall, C, Cook, G, Manson, JL, Sanderson, D. 2002. Direct dating of Neolithic pottery: progress and prospects. Documenta Praehistorica 29:4759.CrossRefGoogle Scholar
Boudin, M, Van Strydonck, M, Crombé, P, De Clercq, W, van Dierendonck, RM, Jongepier, H, Ervynck, A, Lentacker, A. 2010. Fish reservoir effect on charred food residue 14C dates: are stable isotope analyses the solution? Radiocarbon 52(2):697705.CrossRefGoogle Scholar
Boudin, M, Van Strydonck, M, Van den Brande, T, Synal, HA, Wacker, L. 2015. RICH—a new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research B 361:120123.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Constantin, C, Kuijper, W. 2002. Utilisation de mousse comme dégraissant dans des céramiques néolithiques de France et de Belgique. Bulletin de la Société Préhistorique Française 99(4):775–83.CrossRefGoogle Scholar
Constantin, C. 2010. Fine plant temper and the origin of the Swifterbant culture. In: Vanmontfort, B, Louwe Kooijmans, L, Amkreutz, L, Verhart, L, editors. Pots, Farmers and Foragers. Pottery traditions and social interaction in the earliest Neolithic of the Lower Rhine Area. Leiden: Leiden University Press. p. 131134.Google Scholar
Crombé, P, editor. 2005. The last hunter-gatherer-fishermen in Sandy Flanders (NW Belgium); the Verrebroek and Doel excavation projects, part 1: palaeo-environment, chronology and features. Archaeological Reports Ghent University 3. Ghent: Academia Press.Google Scholar
Crombé, P, Vanmontfort, B. 2007. The neolithisation of the Scheldt basin in western Belgium. Proceedings of the British Academy 144:263285.Google Scholar
Crombé, P, Sergant, J, Perdaen, Y, Meylemans, E, Deforce, K. 2015. Neolithic pottery finds at the wetland site of Bazel-Kruibeke (Flanders, Belgium): evidence of long-distance forager-farmer contact during the late 6th and 5th millennium cal BC in the Rhine-Meuse-Scheldt area. Archäologisches Korrespondenzblatt 45(1):2139.Google Scholar
De Atley, SP. 1980. Radiocarbon dating of ceramic materials: progress and prospects. Radiocarbon 22(3):987993.CrossRefGoogle Scholar
De Graeve, A, Verbrugge, A, Cherretté, B. 2019. Ronse Pont West: 4000 jaar wonen in een dynamisch landschap. Solva archeologierapport 157. Unpublished technical report.Google Scholar
Ervynck, A, Boudin, M, Van Neer, W. 2018. Assessing the radiocarbon freshwater reservoir effect for a Northwest-European river system (the Schelde Basin, Belgium). Radiocarbon 60(2):395417.CrossRefGoogle Scholar
Fischer, A, Heinemeier, J. 2003. Freshwater reservoir effect in 14C dates of food residue on pottery. Radiocarbon 45(3):449466.CrossRefGoogle Scholar
Gilmore, ZI. 2015. Direct radiocarbon dating of Spanish moss (Tillandsia usneoides) from early fiber-tempered pottery in the southeastern U.S. Journal of Archaeological Science 58:18.CrossRefGoogle Scholar
Gomes, DC, Vega, O. 1999. Dating organic temper of ceramics by AMS: sample preparation and carbon evaluation. Radiocarbon 41(3):315320.CrossRefGoogle Scholar
Hedges, REM, Tiemei, C, Housley, RA. 1992. Results and methods in the radiocarbon dating of pottery. Radiocarbon 34(3):906915.CrossRefGoogle Scholar
Jan, D, Savary, X. 2017. Petrographic study of tempers in Early and Middle Neolithic pottery in Lower Normandy (France). In: Burnez-Lanotte, L, editor. Matières à Penser: Raw materials acquisition and processing in Early Neolithic pottery productions. Proceedings of the workshop of Namur (Belgium), 29-30 May 2015. Paris: Société Préhistorique Française. p. 159175.Google Scholar
Johnson, JS, Clark, J, Miller-Antonio, S, Robins, D, Schiffer, MB, Skibo, JM. 1988. Effects of firing temperature on the fate of naturally occurring organic matter in clays. Journal of Archaeological Science 15:403414.CrossRefGoogle Scholar
MacDonald, GM, Beukens, RP, Kieser, WE, Vitt, DH. 1987. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the “ice-free corridor” of western Canada. Geology 15:837840.2.0.CO;2>CrossRefGoogle Scholar
Madeja, J, Latowksi, D. 2008. Too old AMS radiocarbon dates obtained from moss remains from Lake Kwiecko bottom sediments (N Poland). Geochronometria 32:1319.CrossRefGoogle Scholar
Marty, J, Myrbo, A. 2014. Radiocarbon dating suitability of aquatic plant macrofossils. Journal of Paleolimnology 52(4):435443.CrossRefGoogle Scholar
Meylemans, E, Perdaen, Y, Sergant, J, Bastiaens, J, Crombé, P, Debruyne, S, Deforce, K, Du Rang, E, Ervynck, A, Lentacker, A, Storme, A, Van Neer, W. 2016. Archeologische opgraving van een midden-mesolithische tot midden-neolithische vindplaats te ‘Bazel-Sluis 5’ (gemeente Kruibeke, provincie Oost-Vlaanderen). Onderzoeksrapport agentschap Onroerend Erfgoed 40.Google Scholar
Němec, M, Wacker, L, Gäggeler, H. 2010. Optimization of the graphitisation process at AGE-1. Radiocarbon 52(2–3):13801393.CrossRefGoogle Scholar
Perdaen, Y, De Loecker, D, Opbroek, M, Woltinge, I. 2017. Verder grootschalig archeologisch onderzoek ter hoogte van het Logistiek Park Waasland Fase West (Verrebroek-Beveren, Oost-Vlaanderen, BE). Notae Praehistoricae 37:4552.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:119.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Sergant, J, Vandendriessche, H, Noens, G, Cruz, F, Allemeersch, L, Aluwé, K, Jacops, J, Wuyts, F, Windey, S, Rozek, J, Depaepe, I, Herremans, D, Laloo, P, Crombé, P. 2016. Opgraving van een mesolithische wetlandsite te Kerkhove ‘Stuw’ (Avelgem, West-Vlaanderen, BE). Eerste resultaten. Notae Praehistoricae 36:4757.Google Scholar
Shen, C, Liu, T, Yi, W, Sun, Y, Jiang, M, Beer, J, Bonani, G. 1998. 14C dating of terrestrial moss in Tern Lake deposits, Antarctica. Radiocarbon 40(2):849854.CrossRefGoogle Scholar
Teetaert, D, Boudin, M, Saverwyns, S, Crombé, P. 2017. Food and soot: organic residues on outer pottery surfaces. Radiocarbon 59(5):16091621.CrossRefGoogle Scholar
Teetaert, D, Baeyens, N, Perdaen, Y, Fiers, G, De Kock, T, Allemeersch, L, Boudin, M, Crombé, P. 2019. A well-preserved Michelsberg Culture domed oven from Kortrijk, Belgium. Antiquity 93(368):342358.CrossRefGoogle Scholar
Vanmontfort, B. 2001. The Group of Spiere as a new stylistic entity in the Middle Neolithic Scheldt Basin. Notae Praehistoricae 21:139143.Google Scholar
Vanmontfort, B. 2007. Bridging the gap. The Mesolithic-Neolithic transition in a frontier zone. Documenta Praehistorica 34:105118.CrossRefGoogle Scholar
Verbrugge, A, Dhaeze, W, Crombé, P, Sergant, J, Deforce, K, Van Strydonck, M. 2009. Een waterkuil of -put van de Michelsbergcultuur te Menen (West-Vlaanderen, België). Notae Praehistoricae 29:5358.Google Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931934.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar