Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T14:42:33.983Z Has data issue: false hasContentIssue false

Reconstruction of Past Co2 Concentration at a Natural Co2 Vent Site Using Radiocarbon Dating of Tree Rings

Published online by Cambridge University Press:  18 July 2016

Fabio Marzaioli*
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
Carmine Lubritto
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
Giovanna Battipaglia
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
Isabella Passariello
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
Mauro Rubino
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
Detlef Rogalla
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy Marie Curie Fellowship (contract HPMD-CT-2001-00088)
Sandro Strumia
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
Franco Miglietta
Affiliation:
IBIMET Via Caproni 8, 50145 Firenze, Italy
Antonio D'Onofrio
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
M Francesca Cotrufo
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
Filippo Terrasi
Affiliation:
Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Total CO2 exposure levels in a naturally enriched site (Lajatico, Italy) were reconstructed using radiocarbon analysis by accelerator mass spectrometry combined with dendrochronological analysis on wood cores extracted from trees grown in the fossil CO2 source proximity. Over 3 decades (1964–1998), the data show a mean CO2 concentration in the atmosphere of 650 ppm, about twice the current concentration in atmosphere, with a maximum around 1980.

Type
Articles
Copyright
Copyright © 2005 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43(2):381–9.CrossRefGoogle Scholar
Burchuladze, AA, Chudy, M, Eristavi, IV, Pagava, SV, Povinec, P, Sivo, A, Togonidze, GI. 1989. Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31(3):771–6.Google Scholar
Cherubini, P. 2000. Tree-ring research beyond the climate change: “Quo vadis?” Dendrochronologia 18:91–8.Google Scholar
Cherubini, P, Gartner, BL, Tognetti, R, Braker, OU, Schoch, W, Innes, JL. 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biological Reviews 78:119–24.Google Scholar
Comins, HN, McMurtrie, RE. 1993. Long-term response of nutrient-limited forests to CO2 enrichment-equilibrium behaviour of plant-soil models. Ecological Application 3:666–81.Google Scholar
Cotrufo, MF, Briones, MJI, Ineson, P. 1998. Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biology and Biochemistry 30:1565–71.Google Scholar
DeAngelis, P, Scarascia-Mugnozza, GE. 1998. Long-term CO2 enrichment in a Mediterranean natural forest: an application of large open top chambers. Chemosphere 36:763–70.Google Scholar
Finnan, JM, Donnelly, A, Burke, JI, Jones, MB. 2002. The effects of elevated concentrations of carbon dioxide and ozone on potato (Solanum tuberosum L.) yield. Agriculture, Ecosystems and Environment 88(1):1122.Google Scholar
Green, JW. 1963. Methods of Carbohydrates Chemistry III [Whistler, RI, editor]. New York: Academic Press. p 921.Google Scholar
Hendrey, GR, Ellsworth, DS, Lewin, KF, Nagy, J. 1999. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2 . Global Change Biology 5:293309.Google Scholar
Hill, SA, Waterhouse, JS, Field, EM, Switsur, VR, Ap Rees, T. 1995. Rapid recycling of triose phosphates in oak stem tissue. Plant Cell Environment 18:931–6.Google Scholar
Hoefs, J. 1997. Stable Isotope Geochemistry. Berlin: Springer-Verlag. 244 p.Google Scholar
Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001. The Scientific Basis. Cambridge: Cambridge University Press. 892 p.Google Scholar
Jones, MB, Clifton Brown, J, Raschi, A, Miglietta, F. 1995. The effects on Arbutus unedo L. of long-term exposure to elevated CO2 . Global Change Biology 1:295302.CrossRefGoogle Scholar
Levy, PE, Cannell, MGR, Friend, AD. 2004. Modeling the impact of future changes in climate, CO2 concentration and use on natural ecosystems and the terrestrial carbon sink. Global Environmental Change 14:21–30.Google Scholar
Lubritto, C, Rogalla, D, Rubino, M, Marzaioli, F, Passariello, I, Romano, M, Spadaccini, G, Casa, G, DiLeva, A, DeCesare, N, D'Onofrio, A, Gialanella, L, Imbriani, G, Palmieri, A, Roca, V, Rolfs, C, Sabbarese, C, Strieder, F, Schuermann, D, Terrasi, F. 2004. Accelerator mass spectrometry at the 4 MV Dynamitron Tandem in Bochum. Nuclear Instruments and Methods in Physics Research B 222:255–60.Google Scholar
Miglietta, F, Peressotti, A, Vaccari, FP, Zaldei, A, DeAngelis, P, Scarascia-Mugnozza, G. 2001. Free-air CO2 enrichment of a poplar plantation: the POPFACE fumigation system. New Phytologist 150:465–76.Google Scholar
Miglietta, F, Bettarini, I, Raschi, A, Kömer, C, Vaccari, FP. 1998. Isotope discrimination and photosynthesis of vegetation growing in the Bossoleto CO2 spring. Chemosphere 36:771–6.Google Scholar
Miglietta, F, Bandiani, M, Bettarini, I, van Gardingen, P. 1993. Carbon dioxide springs and their use for experimentation. In: Schulze, ED, Mooney, HA, editors. Design and Execution of Experiments on CO 2 Enrichment. Ecosystems Research Report nr 6. Brussels: Commission of the European Communities. p 393403.Google Scholar
Milich, L. 1999. The role of methane in global warming: Where might mitigation strategies be focused? Global Environmental Change 9:179201.CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1993. Carbon-14 measurements in atmospheric CO2 from Southern and Northern Hemisphere sites, 1962–1993. The Norwegian Institute of Technology Report. URL: <http://cdiac.esd.ornl.gov/epubs/ndp/ndp057/ndp057.htm>..>Google Scholar
Raiesi, FG. 1998. Effects of elevated atmospheric CO2 and soil organic carbon dynamics in a Mediterranean forest ecosystem [PhD dissertation]. Wageningen, the Netherlands: Wageningen Agricultural University.Google Scholar
Robertson, I, Waterhouse, JS, Barker, AC, Carter, AHC, Switsur, VR. 2001. Oxygen isotope ratios of oak in east England: implications for reconstructing the isotopic composition of precipitation. Earth and Planetary Science Letters 191:2131.CrossRefGoogle Scholar
Schwantz, P, Polle, A. 1998. Antioxidative systems, pigment and protein content in leaves of adult Mediterranean species (Q. pubescens and Q. ilex) with lifetime exposure to elevated CO2 . New Phytologist 140:411–23.Google Scholar
Tognetti, R, Cherubini, P, Innes, JL. 2000. Comparative stem growth rates of Mediterranean trees under background and naturally enhanced CO2 concentrations. New Phytologist 146:5974.Google Scholar
Tognetti, R, Longobucco, A, Miglietta, F, Raschi, A. 1999. Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring. Tree Physiology 19:261–70.Google Scholar
van Gardingen, PR, Grace, J, Harkness, D, Miglietta, F, Raschi, A. 1995. Carbon dioxide emissions at an Italian mineral spring: measurements of average CO2 concentration and air temperature. Agricultural and Forest Meteorology 73:1727.Google Scholar
Vogel, JS, Nelson, DE, Southon, JR. 1987. 14C background levels in an accelerator mass spectrometry system. Radiocarbon 29(3):323–33.Google Scholar