Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T10:33:30.610Z Has data issue: false hasContentIssue false

Rapid Quantification of Bone Collagen Content by ATR-FTIR Spectroscopy

Published online by Cambridge University Press:  05 January 2016

M Lebon*
Affiliation:
Unité Mixte de Recherche 7194, Histoire Naturelle de l’Homme Préhistorique (HNHP), Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Université Perpignan Via Domitia – Sorbonne Universités, 17 Place du Trocadéro, F-75116 Paris, France.
I Reiche
Affiliation:
Unité Mixte de Recherche 8220, Laboratoire d’Archéologie Moléculaire et Structurale (LAMS), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie Paris 6 – Sorbonne Universités, CP 225, 4 place Jussieu, F-75005, Paris, France.
X Gallet
Affiliation:
Unité Mixte de Recherche 7194, Histoire Naturelle de l’Homme Préhistorique (HNHP), Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Université Perpignan Via Domitia – Sorbonne Universités, 17 Place du Trocadéro, F-75116 Paris, France.
L Bellot-Gurlet
Affiliation:
Unité Mixte de Recherche 8233, De la molécule aux nano-objets: réactivité, interactions et spectroscopies (MONARIS), Centre National de la Recherche Scientifique Université Pierre et Marie Curie Paris 6 – Sorbonne Universités, CP 49, 4 place Jussieu, F-75252 Paris, France.
A Zazzo
Affiliation:
Unité Mixte de Recherche 7209, Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Sorbonne Universités, CP 56, 55 rue Buffon, F-75005 Paris, France.
*
*Corresponding author. Email: [email protected].

Abstract

Expensive and time-consuming preparation procedures for radiocarbon and stable isotope analyses can be conducted on archaeological bone samples even if no collagen is preserved. Such unsuccessful preparation can lead to the partial destruction of valuable archaeological material. Establishing a rapid prescreening method for evaluating the amount of bone collagen while minimizing the impact of sampling constitutes a challenge for the preservation of archaeological collections. This study proposes and discusses a new methodology to detect and quantify collagen content in archaeological bone samples by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A total of 42 Pleistocene to modern bone samples were selected according to their nitrogen content measured using an elemental analyzer. Comparison of collagen content estimation using ATR-FTIR and mass spectrometry reveals that some of the studied samples are contaminated by a nitrogen source coming from the burial environment. Two different FTIR calibration approaches were tested on the uncontaminated samples: peak-to-peak ratio and multivariate regression (PLS). The two approaches yield similar results with a good correlation of ATR-FTIR analyses and N wt% from 0.7 to 4wt% (R²=0.97–0.99; standard error of estimation ±0.22 to 0.25wt%). While collagen content remains difficult to detect in poorly preserved bones (less than ~3wt%), ATR-FTIR analysis can be a fast alternative for sample screening to optimize the sampling strategy and avoid partial destruction of valuable samples that do not contain enough collagen for further analysis.

Type
Research Article
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17(4):431451.Google Scholar
Beasley, MM, Bartelink, EJ, Taylor, L, Miller, RM. 2014. Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. Journal of Archaeological Science 46:1622.Google Scholar
Berna, F, Matthews, A, Weiner, S. 2004. Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science 31:867882.CrossRefGoogle Scholar
Blanchard, P, Castex, D, Coquerelle, M, Giuliani, R, Ricciardi, M. 2007. A mass grave from the catacomb of Saints Peter and Marcellinus in Rome, second-third century AD. Antiquity 81(314):989998.Google Scholar
Bocherens, H, Drucker, D, Billiou, D, Moussa, I. 2005. Une nouvelle approche pour évaluer l'état de conservation de l’os et du collagène pour les mesures isotopiques (datation au radiocarbone, isotopes stables du carbone et de l’azote). L’Anthropologie 109(3):557567.Google Scholar
Brock, F, Higham, T, Bronk Ramsey, C. 2010. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4):855865.Google Scholar
Brock, F, Wood, R, Higham, TFG, Ditchfield, P, Bayliss, A, Bronk Ramsey, C. 2012. Reliability of nitrogen content (%N) and carbon:nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54(3–4):879886.Google Scholar
Busigny, V, Cartigny, P, Philippot, P, Javoy, M. 2003. Ammonium quantification in muscovite by infrared spectroscopy. Chemical Geology 198(1–2):2131.CrossRefGoogle Scholar
Castex, D, Blanchard, A. 2012. Témoignages archéologiques de crise(s) épidémique(s): la catacombe des Saints Marcellin et Pierre (Rome, fin Ier-IIIe s.). In: Castex D, Courtaud P, Duday H, Le Mort F, Tillier A-M, editors. Le regroupement des morts. Genèse et diversité archéologique. Bordeaux: Maison des sciences de l’homme d’Aquitaine. p 281293.Google Scholar
Chadefaux, C, Le Hô, A-S, Bellot-Gurlet, L, Reiche, I. 2009. Curve-fitting Micro-ATR-FTIR studies of the Amide I and II bands of Type I collagen in archaeological bone materials. E-Preservation Science 6:129137.Google Scholar
Collins, MJ, Nielsen-Marsh, CM, Hiller, J, Smith, CI, Roberts, JP, Prigodich, RV, Wess, TJ, Csapo, J, Millard, AR, Turner-Walker, G. 2002. The survival of organic matter in bone: a review. Archaeometry 44:383394.Google Scholar
D’Elia, M, Gianfrate, G, Quarta, G, Giotta, L, Giancane, G, Calcagnile, L. 2007. Evaluation of possible contamination sources in the 14C analysis of bone samples by FTIR spectroscopy. Radiocarbon 49(2):201210.Google Scholar
DeNiro, MJ, Weiner, S. 1988. Chemical, enzymatic and spectroscopic characterization of “collagen” and other organic fractions from prehistoric bones. Geochimica et Cosmochimica Acta 52(9):21972206.Google Scholar
Feinberg, M. 2012. Validation internes des méthodes d’analyse. Techniques de l’ingénieur, Analyses et Caractérisation base documentaire: TIB497DUO(ref. article : p224). p 1–23.Google Scholar
France, CAM, Thomas, DB, Doney, CR, Madden, O. 2014. FT-Raman spectroscopy as a method for screening collagen diagenesis in bone. Journal of Archaeological Science 42:346355.Google Scholar
Gianfrate, G, D’Elia, M, Quarta, G, Giotta, L, Valli, L, Calcagnile, L. 2007. Qualitative application based on IR spectroscopy for bone sample quality control in radiocarbon dating. Nuclear Instruments and Methods in Physics Research B 259(1):316319.Google Scholar
Hedges, REM. 2002. Bone diagenesis: an overview of processes. Archaeometry 44(3):319328.Google Scholar
Hollund, HI, Ariese, F, Fernandes, R, Jans, MME, Kars, H. 2013. Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry 55(3):507532.CrossRefGoogle Scholar
Lebon, M. 2008. Caractérisation par Spectroscopie Infrarouge à Transformée de Fourier des ossements chauffés en contexte archéologique - Comparaison entre référentiel moderne et matériel archéologique, Implication diagénétique. Paris: Muséum National d’Histoire Naturelle. 339 p.Google Scholar
Lebon, M, Reiche, I, Bahain, JJ, Chadefaux, C, Moigne, AM, Fröhlich, F, Sémah, F, Schwarcz, HP, Falguères, C. 2010. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. Journal of Archaeological Science 37(9):22652276.Google Scholar
Lebon, M, Müller, K, Bahain, JJ, Fröhlich, F, Falguères, C, Bertrand, L, Sandt, C, Reiche, I. 2011. Imaging fossil bone alterations at the microscale by SR-FTIR microspectroscopy. Journal of Analytical Atomic Spectrometry 26(5):922929.Google Scholar
Lee-Thorp, JA. 2008. On isotopes and old bones. Archaeometry 50(6):925950.Google Scholar
Ricca, G, Severini, F. 1993. Structural investigations of humic substances by IR-FT, 13C-NMR spectroscopy and comparison with a maleic oligomer of known structure. Geoderma 58(3–4):233244.Google Scholar
Salesse, K, Dufour, E, Lebon, M, Wurster, C, Castex, D, Bruzek, J, Zazzo, A. 2014. Variability of bone preservation in a confined environment: the case of the catacomb of Sts Peter and Marcellinus (Rome, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 416:4354.Google Scholar
Stafford, TW Jr, Brendel, K, Duhamel, RC. 1988. Radiocarbon, 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochimica et Cosmochimica Acta 52(9):22572267.CrossRefGoogle Scholar
Stevenson, FJ, Goh, KM. 1971. Infrared spectra of humic acids and related substances. Geochimica et Cosmochimica Acta 35(5):471483.Google Scholar
Thompson, TJU, Islam, M, Piduru, K, Marcel, A. 2011. An investigation into the internal and external variables acting on crystallinity index using Fourier transform infrared spectroscopy on unaltered and burned bone. Palaeogeography, Palaeoclimatology, Palaeoecology 299(1–2):168174.Google Scholar
Tisnérat-Laborde, N, Valladas, H, Kaltnecker, E, Arnold, M. 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon 45(3):409419.Google Scholar
Trueman, CNG, Behrensmeyer, AK, Tuross, N, Weiner, S. 2004. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science 31(6):721739.Google Scholar
Tütken, T, Vennemann, TW, Pfretzschner, HU. 2008. Early diagenesis of bone and tooth apatite in fluvial and marine settings: constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 266(3–4):254268.CrossRefGoogle Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695.Google Scholar
van Klinken, GJ, Hedges, REM. 1995. Experiments on collagen-humic interactions: speed of humic uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22(2):263270.Google Scholar
Vincke, D, Miller, R, Stassart, É, Otte, M, Dardenne, P, Collins, M, Wilkinson, K, Stewart, J, Baeten, V, Fernández Pierna, JA. 2014. Analysis of collagen preservation in bones recovered in archaeological contexts using NIR hyperspectral imaging. Talanta 125:181188.CrossRefGoogle ScholarPubMed
Wood, R. 2015. From revolution to convention: the past, present and future of radiocarbon dating. Journal of Archaeological Science 56:6172.Google Scholar
Yizhaq, M, Mintz, G, Cohen, I, Khalaily, I, Weiner, S, Boaretto, E. 2005. Quality controlled radiocarbon dating of bones and charcoal from the early Pre-Pottery Neolithic B (PPNB) of Motza (Israel). Radiocarbon 47(2):193206.Google Scholar
Yonebayashi, K, Hattori, T. 1988. Chemical and biological studies on environmental humic acids. Soil Science and Plant Nutrition 34(4):571584.Google Scholar
Zazzo, A, Saliège, J-F, Lebon, M, Lepetz, S, Moreau, C. 2012. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon 54(3–4):855866.Google Scholar
Zazzo, A, Lebon, M, Chiotti, L, Comby, C, Delque-Kolic, EN, Reiche, I. 2013. Can we use calcined bones for radiocarbon dating the Paleolithic? Radiocarbon 55(3–4):14091421.Google Scholar