Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T14:55:22.630Z Has data issue: false hasContentIssue false

Radiometric Dating of Young and Old Calcrete

Published online by Cambridge University Press:  18 July 2016

Mebus A. Geyh
Affiliation:
Niedersächsisches Landesamt für Bodenforschung, P.O. Box 510153, D-30631 Hannover, Germany
Bernhard Eitel
Affiliation:
Niedersächsisches Landesamt für Bodenforschung, P.O. Box 510153, D-30631 Hannover, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To obtain a better understanding of the relationship between calcrete genesis and the results of different absolute dating methods, thermoluminescence (TL), radiocarbon (14C) and uranium/thorium (U/Th) were applied to coeval sample; take from a very young calcrete profile in Namibia. The methodically different ages reflect the characteristics of the applied dating methods, the genetics of calcrete and different events of calcrete genesis. The conventional 14C ages and the TL dates cover the last 50 ka, while the corresponding U/Th dates of coeval samples are many times larger, Uranium-series dates are not related to the deposition of the host material or to its cementation if the ages are smaller than ca. 120 ka. The TL clock is set to zero during eolian transport and the corresponding radiometric ages of the quartz and feldspar grains date the time of their deposition. The 14C ages of the cement correspond, on the other hand, to a time shortly after the onset of the cementation and long before its termination. In the case of very old calcrete, the mixture of young and old cement results in ambiguous ages if they cannot be confirmed by an independent technique.

Type
Part 2: Applications
Copyright
Copyright © The American Journal of Science 

References

Barabas, M., Walther, R., Wieser, A., Radtke, U. and Grün, R. 1993 Second interlaboratory-comparison project on ESR dating. Applied Radiation & Isotopes 44: 119129.Google Scholar
Berger, G. W., Pillans, B. J. and Palmer, A. S. 1992 Dating loess up to 800 ka by thermoluminescence. Geology 20: 403406.Google Scholar
Blümel, W. D. 1982 Calcretes in Namibia and SE Spain relations to substratum, soil formation and geomorphic factors. Catena Supplement 1: 6782.Google Scholar
Blümel, W. D. 1991 Kalkkrusten - ihre genetische Beziehungen zu Bodenbildungen und äolischer Sedimentation. Geomothodica 16: 169197.Google Scholar
Eitel, B. 1994 Kalkreiche Decksedimente und Kalkkru-stengenerationen in Namibia: Zur Frage der Herkunft und Mobilisierung des Calciumcarbonats. Stuttgarter Geographische Studien 123: 193 p.Google Scholar
Eitel, B. 1995 Kalkkrusten in Namibia und ihre paläoklimatische Interpretation. Geomethodica 20: 101124.Google Scholar
Eitel, B. and Zöller, L. 1995 Die Beckensedimente von Dieprivier und Uitskot (NW-Namibia): Ein Beitrag zu ihrer paläoklimatischen Interpretation auf der Basis von Thermolumineszenzdatierungen. Mitteilungen der Österreichischen Geographischen Gesellschaft 137: 245254.Google Scholar
Eitel, B. and Zöller, L. 1996 Soils and sediments in the basin of Dieprivier – Uitskot (Khorixas District, Nambia): Age, geomorphic and sedimentological investigation, paleoclimatic interpretation. Palaeoecology of Africa 24:159172.Google Scholar
Geyh, M. A. 1995 Geochronologische Aspekte paläohydrologischer und paläoklimatischer Befunde in Namibia. Geomethodica 20: 7599.Google Scholar
Geyh, M. A. and Schleicher, H. 1990 Absolute Age Determination. Physical and Chemical Dating Methods and Their Application. Berlin, Springer-Verlag: 503 p.Google Scholar
Hennig, G. J., Geyh, M. A. and Grün, R. 1985 The first interlaboratory ESR comparison project phase II: Evaluation of equivalent doses (ED) of calcites. Nuclear Tracks 10: 945952.Google Scholar
Ivanovich, M. and Harmon, R. S., eds. 1993 Uranium Series Disequilibrium. Applications for Environmental Problems. Oxford, Clarendon: 571 p.Google Scholar
Netterberg, F. 1978 Dating and correlation of calcretes and other pedocretes. Transactions of the Geological Society of South Africa 81: 379391.Google Scholar
Stuiver, M. and Polach, H. A. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Thomas, D. S. and Shaw, P. A. 1991 The Kalahari Environment. Cambridge, Cambridge University Press: 284 p.Google Scholar
Wintle, A. G. 1987 Thermoluminescence dating of loess. Catena Supplement 9: 103115.Google Scholar
Wintle, A. G., Questiaux, D. G., Roberts, R. G. and Spooner, N. A. 1993 Dating loess up to 800 ka by thermoluminescence. Comment and reply. Geology 21: 568569.2.3.CO;2>CrossRefGoogle Scholar