Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T01:16:21.602Z Has data issue: false hasContentIssue false

RADIOCARBON RESERVOIR AGES IN THE HOLOCENE DEAD SEA

Published online by Cambridge University Press:  24 April 2020

Nurit Weber*
Affiliation:
The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmund Safra Campus, Givat-Ram, Jerusalem9190401, Israel Geological Survey of Israel, 32 Yesha’ayahu Leibowitz St., Jerusalem9692100, Israel
Boaz Lazar
Affiliation:
The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmund Safra Campus, Givat-Ram, Jerusalem9190401, Israel
Ofra Stern
Affiliation:
The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmund Safra Campus, Givat-Ram, Jerusalem9190401, Israel Geological Survey of Israel, 32 Yesha’ayahu Leibowitz St., Jerusalem9692100, Israel
George Burr
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, TucsonAZ85721-0081, USA Department of Geosciences, National Taiwan University, Taipei, Taiwan
Ittai Gavrieli
Affiliation:
Geological Survey of Israel, 32 Yesha’ayahu Leibowitz St., Jerusalem9692100, Israel
Mark Roberts
Affiliation:
NOSAMS, Woods Hole Oceanographic Institution, Woods Hole, MA02543, USA
Mark D Kurz
Affiliation:
NOSAMS, Woods Hole Oceanographic Institution, Woods Hole, MA02543, USA
Yoseph Yechieli
Affiliation:
Geological Survey of Israel, 32 Yesha’ayahu Leibowitz St., Jerusalem9692100, Israel Department of Hydrology and Microbiology, Zuckerberg Center, Ben-Gurion University of the Negev, Sede Boker8499000, Israel
Mordechai Stein
Affiliation:
The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, The Edmund Safra Campus, Givat-Ram, Jerusalem9190401, Israel Geological Survey of Israel, 32 Yesha’ayahu Leibowitz St., Jerusalem9692100, Israel
*
*Corresponding author. Email: [email protected].

Abstract

The sources and fate of radiocarbon (14C) in the Dead Sea hypersaline solution are evaluated with 14C measurements in organic debris and primary aragonite collected from exposures of the Holocene Ze’elim Formation. The reservoir age (RA) is defined as the difference between the radiocarbon age of the aragonite at time of its precipitation (representing lakeʼs dissolved inorganic carbon [DIC]) and the age of contemporaneous organic debris (representing atmospheric radiocarbon). Evaluation of the data for the past 6000 yr from Dead Sea sediments reveal that the lakeʼs RA decreased from 2890 yr at 6 cal kyr BP to 2300 yr at present. The RA lies at ~2400 yr during the past 3000 yr, when the lake was characterized by continuous deposition of primary aragonite, which implies a continuous supply of freshwater-bicarbonate into the lake. This process reflects the overall stability of the hydrological-climate conditions in the lakeʼs watershed during the late Holocene where bicarbonate originated from dissolution of the surface cover in the watershed that was transported to the Dead Sea by the freshwater runoff. An excellent correlation (R2=0.98) exists between aragonite ages and contemporaneous organic debris, allowing the estimation of ages of various primary deposits where organic debris are not available.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avrahamov, N, Yechieli, Y, Lazar, B, Lewenberg, O, Boaretto, E, Sivan, O. 2010. Characterization and dating of saline groundwater in the Dead Sea area. Radiocarbon 52(2):11231140.CrossRefGoogle Scholar
Bartov, Y, Goldstein, SL, Stein, M, Enzel, Y. 2003. Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31(5):439.2.0.CO;2>CrossRefGoogle Scholar
Bartov, Y, Stein, M, Enzel, Y, Agnon, A, Reches, Z. 2002. Lake Levels and Sequence Stratigraphy of Lake Lisan, the Late Pleistocene Precursor of the Dead Sea. Quaternary Research 57(1):921.CrossRefGoogle Scholar
Begin, ZB, Broecker, W, Buchbinder, B, Druckman, Y, Kaufman, A, Magaritz, M, Neev, D. 1985. Dead Sea and Lake Lisan levels in the last 30,000 years. Israel Geological Survey Report 29/85:117.Google Scholar
Belmaker, R, Lazar, B, Stein, M, Taha, N, Bookman, R. 2019. Constraints on aragonite precipitation in the Dead Sea from geochemical measurements of flood plumes. Quaternary Science Reviews 221:105876.CrossRefGoogle Scholar
Belmaker, R, Stein, M, Beer, J, Christl, M, Fink, D, Lazar, B. 2014. Beryllium isotopes as tracers of Lake Lisan (last Glacial Dead Sea) hydrology and the Laschamp geomagnetic excursion. Earth and Planetary Science Letters 400:233242.CrossRefGoogle Scholar
Belmaker, R, Stein, M, Yechieli, Y, Lazar, B. 2007. Controls on the radiocarbon reservoir ages in the modern Dead Sea drainage system and in the Last Glacial Lake Lisan. Radiocarbon 49(2):969982.CrossRefGoogle Scholar
Bookman, R, Enzel, Y, Agnon, A, Stein, M. 2004. Late Holocene lake levels of the dead sea. Bulletin of the Geological Society of America 116(5–6):555571.CrossRefGoogle Scholar
Bookman, R, Lazar, B, Stein, M, Burr, GS. 2007. Radiocarbon dating of primary aragonite by sequential extraction of CO2. Holocene 17(1):131137.CrossRefGoogle Scholar
Golan, R, Gavrieli, I, Ganor, J, Lazar, B. 2016. Controls on the pH of hyper-saline lakes – A lesson from the Dead Sea. Earth and Planetary Science Letters 434:289297.CrossRefGoogle Scholar
Golan, R, Lazar, B, Wurgaft, E, Lensky, N, Ganor, J, Gavrieli, I. 2017. Continuous CO2 escape from the hypersaline Dead Sea caused by aragonite precipitation. Geochimica et Cosmochimica Acta 207:4356.CrossRefGoogle Scholar
Haase-Schramm, A, Goldstein, SL, Stein, M. 2004. U-Th dating of Lake Lisan (late Pleistocene Dead Sea) aragonite and implications for glacial east Mediterranean climate change. Geochimica et Cosmochimica Acta 68(5):9851005.CrossRefGoogle Scholar
Haliva-Cohen, A, Stein, M, Goldstein, SL, Sandler, A, Starinsky, A. 2012. Sources and transport routes of fine detritus material to the Late Quaternary Dead Sea basin. Quaternary Science Reviews 50:5570.CrossRefGoogle Scholar
Hall, JK. 1997. Topography and bathymetry of the Dead Sea depression. In: Niemi, TM, Ben-Avraham, Z, Gat, JR, editors. The Dead Sea: The Lake and its setting. New York: Oxford University Press. p. 1121.Google Scholar
Kagan, EJ, Langgut, D, Boaretto, E, Neumann, FH, Stein, M. 2015. Dead Sea levels during the Bronze and Iron Ages. Radiocarbon 57(2):237252.CrossRefGoogle Scholar
Ken-Tor, R, Agnon, A, Enzel, Y, Stein, M, Marco, S, Negendank, JFW. 2001. High-resolution geological record of historic earthquakes in the Dead Sea basin. Journal of Geophysical Research: Solid Earth 106(B2):22212234.CrossRefGoogle Scholar
Lensky, NG, Dvorkin, Y, Lyakhovsky, V, Gertman, I, Gavrieli, I. 2005. Water, salt, and energy balances of the Dead Sea. Water Resources Research 41(12):113.CrossRefGoogle Scholar
Machlus, M, Enzel, Y, Goldstein, SL, Marco, S, Stein, M. 2000. Reconstructing low levels of Lake Lisan by correlating fan-delta and lacustrine deposits. Quaternary International 73:137144.CrossRefGoogle Scholar
Migowski, C, Stein, M, Prasad, S, Negendank, JF, Agnon, A. 2006. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research 66(3):421431.CrossRefGoogle Scholar
Morin, E, Ryb, T, Gavrieli, I, Enzel, Y. 2018. Mean, variance, and trends of Levant precipitation over the past 4500 years from reconstructed Dead Sea levels and stochastic modeling. Quaternary Research 2018:117.Google Scholar
Müller, G, Gastner, M. 1971. The “Karbonat-Bombe”, a simple device for the determination of carbonate content in sediment, soils, and other materials, Neues Jahrbuch für Mineralogie - Monatshefte, Bremerhaven. PANGAEA 10:466469.Google Scholar
Neev, D, Emery, KO. 1967. The Dead Sea—depositional processes and environments of evaporites. Jerusalem.Google Scholar
Palchan, D, Erel, Y, Stein, M. 2018a. Geochemical characterization of contemporary fine detritus in the Dead Sea watershed. Chemical Geology 494(April):3042.CrossRefGoogle Scholar
Palchan, D, Stein, M, Goldstein, SL, Almogi-Labin, A, Tirosh, O, Erel, Y. 2018b. Synoptic conditions of fine-particle transport to the last interglacial Red Sea-Dead Sea from Nd-Sr compositions of sediment cores. Quaternary Science Reviews 179:123136.CrossRefGoogle Scholar
Prasad, S, Negendank, JFW, Stein, M. 2009. Varve counting reveals high resolution radiocarbon reservoir age variations in palaeolake Lisan. Journal of Quaternary Science 24(7):690696.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Roberts, ML, Beaupré, SR, Burton, JR. 2013. A high-throughput, low-cost method for analysis of carbonate samples for 14C. Radiocarbon 55(2):585592.CrossRefGoogle Scholar
Schramm, A, Stein, M, Goldstein, SL. 2000. Calibration of the 14C time scale to >40 ka by 234U–230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth and Planetary Science Letters 175(1–2):2740.CrossRefGoogle Scholar
Stein, M. 2001. The sedimentary and geochemical record of neogene-quaternary water bodies in the Dead Sea basin—inferences for the regional paleoclimatic history. Journal of Paleolimnology 26:271282.CrossRefGoogle Scholar
Stein, M. 2014. The evolution of Neogene-Quaternary water-bodies in the Dead Sea Rift Valley. Dordrecht: Springer. p. 279316.Google Scholar
Stein, M, Agnon, A, Katz, A, Starinsky, A. 2002. Strontium isotopes in discordant dolomite bodies of the Judea Group, Dead Sea basin. Israel Journal of Earth Sciences, 51(3–4), 219224.CrossRefGoogle Scholar
Stein, M, Goldstein, LS, Schramm, A. 2000. Radiocarbon calibration beyond the dendrochronology range. Radiocarbon 42(3):415422.CrossRefGoogle Scholar
Stein, M, Lazar, B, Goldstein, SL. 2013. Radiocarbon reservoir ages as freshwater-brine monitors in Lake Lisan, Dead Sea system. Radiocarbon 55:10501057.CrossRefGoogle Scholar
Stein, M, Migowski, C, Bookman, R, Lazar, B. 2004. Temporal changes in radiocarbon reservoir age in the Dead Sea-Lake Lisan system. Radiocarbon 46:649655.CrossRefGoogle Scholar
Steinhorn, I, Assaf, G, Gat, JR, Nishry, A, Nissenbaum, A, Stiller, M, Beyth, M, Neev, D, Garber, R, Friedman, GM, et al. 1979. The Dead Sea: Deepening of the mixolimnion signifies the overture to overturn of the water column. Science 206(4414):5557.CrossRefGoogle ScholarPubMed
Stiller, M, Chung, YC. 1984. Radium in the Dead Sea: A possible tracer for the duration of meromixis 1. Limnology and Oceanography 29(3):574586.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.CrossRefGoogle Scholar
Talma, AS, Vogel, JC, Stiller, M. 1997. The radiocarbon content of the Dead Sea. In: Niemi, TM, Ben-Avraham, Z, Gat, Y, editors. The Dead Sea—the lake and its setting. Oxford: Oxford University Press. p. 171183.Google Scholar
Torfstein, A, Goldstein, SL, Stein, M, Enzel, Y. 2013. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69:17.CrossRefGoogle Scholar
van der Borg, K, Stein, M, de Jong, AFM, Waldmann, ND, Goldstein, SL. 2004. Near-zero Δ14C values at 32 kyr cal BP observed in the high-resolution 14C record from U-Th dated sediment of Lake Lisan. Radiocarbon 46(2):785795.CrossRefGoogle Scholar
Weber, N, Yechieli, Y, Stein, M, Gavrieli, I, Yokochi, R, Zappala, J, Mueller, P, Lazar, B. 2018. The circulation of the Dead Sea brine in the regional aquifer. Earth and Planetary Science Letters 493:242261.CrossRefGoogle Scholar
Yechieli, Y, Ronen, D, Kaufman, A. 1996. The source and age of ground water brines in the Dead Sea area, as deduced from 36Cl and 14C. Geochimica et Cosmochimica Acta 60(11):19091916.CrossRefGoogle Scholar