Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:38:38.709Z Has data issue: false hasContentIssue false

Radiocarbon Reservoir Ages and Hardwater Effect for the Northeastern Coastal Waters of Argentina

Published online by Cambridge University Press:  18 July 2016

Eduardo A Gómez*
Affiliation:
Instituto Argentino de Oceanografía (CONICET-UNS), Camino “La Carrindanga” km 7, CC 804, 8000 Bahía Blanca, Argentina. Also: UTN Facultad Regional Bahía Blanca, 11 de Abril 461, 8000 Bahía Blanca, Argentina
C Marcela Borel
Affiliation:
CONICET, Departamento de Geología, Universidad Nacional del Sur. San Juan 670, 8000 Bahía Blanca, Argentina
Marina L Aguirre
Affiliation:
INGEA CONICET, Laboratorio 6 (Malacofauna Cuaternaria), Facultad de Ciencias Naturales y Museo, Calle 64 no. 3 (119 y 120), 1900 La Plata, Argentina
Daniel E Martínez
Affiliation:
CONICET-Centro de Geología de Costas y del Cuaternario, Universidad Nacional de Mar del Plata, CC 722, 7600 Mar del Plata, Argentina
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Accelerator mass spectrometry (AMS) radiocarbon dates were obtained for 18 mollusk shells collected alive along the Buenos Aires province coast, Argentina, over the period AD 1914–1935. Reservoir ages were estimated for all samples on the basis of the tree-ring calibration curve for the Southern Hemisphere (SHCal04, McCormac et al. 2004) and the marine δR values calculated as the difference between the conventional 14C age and the age deduced from the marine, mixed-layer model calculation (Marine04, Hughen et al. 2004). For most coastal locations, a great δR scatter was observed, ranging from 191 to 2482 yr, which is explained by the input of varying content of dissolved carbonate by rivers and groundwater (“hardwater effect”) and indicates a serious limitation for shell-based 14C chronologies. Within the interior of Bahía Blanca estuary, δR values ranged from −40 to 50 ± 46 as a consequence of the local geological particularities of the environment. This suggests that, with some restrictions, the marine calibration curve with standard parameters (δR = 0) could be used at this location.

Type
Articles
Copyright
Copyright © 2008 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Aguirre, ML, Farinati, EA. 2000. Aspectos sistemáticos, de distribución y paleoambientales de los Hydrobiidae (Littoridina spp.) (Mesogastropoda) del Cuaternario marino de Argentina (Sudamérica). Geobios 33(5):569–97. In Spanish.CrossRefGoogle Scholar
Aguirre, ML, Urrutia, MI. 2002. Morphological variability of Littoridina australis (d'Orbigny, 1835) (Hydrobiidae) in the Bonaerensian marine Holocene (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 183(1–2):123.Google Scholar
Albero, MC, Angiolini, F, Piana, EL. 1987. Holocene 14C reservoir effect at Beagle Channel (Tierra del Fuego, Argentine Republic). Quaternary of South America and Antarctic Peninsula 5:5971.Google Scholar
Angulo, RJ, de Souza, MC, Reimer, PJ, Sasaoka, SK. 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47(1):6773.CrossRefGoogle Scholar
Appelo, CAJ, Postma, D. 1993. Geochemistry, Groundwater and Pollution. Rotterdam: A.A. Balkema. 536 p.Google Scholar
Broecker, WS, Olson, EA. 1961. Lamont radiocarbon measurements VIII. Radiocarbon 3:176204.Google Scholar
Carrica, JC. 1998. Hidrogeología de la Cuenca del Arroyo Napostá Grande, provincia de Buenos Aires [unpublished PhD dissertation]. Bahía Blanca: Universidad National del Sur. 215 p. In Spanish.Google Scholar
Chapman, T. 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes 13(5):701–14.Google Scholar
Cordero, RR, Panarello, H, Lanzelotti, S, Favier Dubois, CM. 2003. Radiocarbon age offset between living organisms from the marine and continental reservoir in coastal localities of Patagonia (Argentina). Radiocarbon 45(1):915.CrossRefGoogle Scholar
De Francesco, CG, Isla, FI. 2003. Distribution and abundance of Hydrobiid snails in a mixed estuary and a coastal lagoon, Argentina. Estuaries 26(3):790–7.CrossRefGoogle Scholar
Dyke, AS, Andrews, JT, Clark, PU, England, JH, Miller, GH, Shaw, J, Veillette, JJ. 2002. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews 21(1–3):931.Google Scholar
Eastoe, CJ, Fish, S, Fish, P, Dulce Gaspar, M, Long, A. 2002. Reservoir corrections for marine samples from the South Atlantic coast, Santa Catarina State, Brazil. Radiocarbon 44(1):145–8.CrossRefGoogle Scholar
Eiríksson, J, Larsen, G, Knudsen, KL, Heinemeier, J, Símonarson, LA. 2004. Marine reservoir age variability and water mass distribution in the Iceland Sea. Quaternary Science Reviews 23(20–22):2247–68.CrossRefGoogle Scholar
Forman, SL, Polyak, L. 1997. Radiocarbon content of pre-bomb marine mollusks and variations in the 14C reservoir age for coastal areas of the Barents and Kara seas, Russia. Geophysical Research Letters 24(8):885–8.CrossRefGoogle Scholar
Goodfriend, GA, Flessa, KW. 1997. Radiocarbon reservoir ages of the Gulf of California: roles of upwelling and flow from the Colorado River. Radiocarbon 39(1): 139–48.CrossRefGoogle Scholar
Guilderson, TP, Burckle, L, Hemming, S, Peltier, WR. 2000. Late Pleistocene sea level variations derived from the Argentine Shelf. Geochemistry, Geophysics, Geosystems 1: doi:10.1029/2000GC000098.CrossRefGoogle Scholar
Heier-Nielsen, S, Heinemeier, J, Nielsen, HL, Rud, N. 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37(3):875–82.Google Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–86.Google Scholar
Ingram, BL, Southon, JR. 1996. Reservoir ages in eastern Pacific coastal and estuarine waters. Radiocarbon 38(3):573–82.CrossRefGoogle Scholar
Little, EA. 1993. Radiocarbon age calibration at archaeological sites of coastal Massachusetts and vicinity. Journal of Archaeological Science 20(4):457–71.Google Scholar
Martínez, DE, Bocanegra, E. 2002. Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar del Plata, Argentina. Hydrogeology Journal 10(3):393408.Google Scholar
Martínez, DE, Dapeña, C, Massone, H, Panarello, H, Quiroz Londoño, OM, Ferrante, A. 2006. Hidrogeoquímica e hidrología isotópica aplicada al estudio de la relación agua subterránea-agua superficial en grandes cuencas: la cuenca del río Quequén Grande, Buenos Aires, Argentina. In: Memorias del VIII Congreso de ALHSUD (Asunción, Paraguay). p 57–8. In Spanish.Google Scholar
Martínez, DE, Osterrieth, M. 1999. Geoquímica de la sílice disuelta en el Acuífero Pampeano en la Vertiente Sudoriental de Tandilia. Hidrología Subterránea 13: 241–50. In Spanish.Google Scholar
Massone, H, Martínez, DE, Tomas, ML. 2005. Caracterización hidroquímica superficial y subterránea de la cuenca superior del arroyo Grande (Prov. de Buenos Aires). In: II Seminario Hispano-Latinoamericano sobre Temas Actuales de la Hidrología Subterránea [proceedings]. Universidad Nacional de Río Cuarto, Argentina. p 4756. In Spanish.Google Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):1087–92.Google Scholar
Reimer, PJ, Reimer, RW. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43(2A):461–3. (Supplemental material URL: http://www.calib.org. Accessed 1 January 2007.)CrossRefGoogle Scholar
Sala, JM, Bonorino, AG, Carrica, JC. 1985. Aspectos hidroquímicos del acuífero libre en los alrededores de Ingeniero White, provincia de Buenos Aires. In: Primeras Jornadas Geológicas Bonaerenses [proceedings]. Tandil, Argentina. p 505–24. In Spanish.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Teruggi, M. 1957. The nature and origin of the Argentine loess. Journal of Sedimentary Research 27(3):322–32.Google Scholar
Tricart, JLF. 1973. Geomorfología de la Pampa Deprimida. INTA, Colección Científica 12. Buenos Aires: Institute Nacional de Tecnología Agropecuaria (INTA). 202 p. In Spanish.Google Scholar