Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-22T23:35:22.393Z Has data issue: false hasContentIssue false

RADIOCARBON MORTAR DATING INTERCOMPARISON MODIS2—APPROACH FROM THE ZAGREB RADIOCARBON LABORATORY, CROATIA

Published online by Cambridge University Press:  30 September 2024

Andreja Sironić*
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia
Alexander Cherkinsky
Affiliation:
Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
Vjekoslav Štrukil
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia Drava International d.o.o., Osijek, Croatia
Damir Borković
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia
Jadranka Barešić
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia
Ines Krajcar Bronić
Affiliation:
Ruđer Bošković Institute, Zagreb, Croatia
*
*Corresponding author. Email: [email protected]

Abstract

The Second International Mortar Dating Intercomparison Study (MODIS2) took place in 2020. Three mortar samples from different sites and chronologies were distributed among various research groups in form of bulk mortar and grain fraction smaller than 150 µm. This is the first time the Zagreb Radiocarbon Laboratory, with support of the Center of Applied Isotope Studies, University of Georgia, took part in the international mortar intercomparison. The initial approach of the Laboratory to mortar dating was to separate 32–63 µm grain fraction and collect three CO2 gas portions by sequential dissolution with acid. After checking the 14C date trends of the gas portions, which should be ascending with later fractions, the one for the first and shortest gas portion was reported as the age of the mortar. However, the first gas portion might not be true age of the mortar, since it still might contain some “dead” carbon. Therefore, data extrapolation from the first two initial CO2 portions was also conducted on the results, but not reported to the intercomparison. Though in general, all the intercomparison reported dates fit the expected historical ages, for one sample, the extrapolated result showed a better match to the historical data.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Barrett, GT, Donnelly, C, Reimer, PJ. 2020. Radiocarbon dating mortar: the identification of a Medieval Irish round tower using a multi-method inter-comparative approach. Journal of Archaeological Science: Reports 33. doi: 10.1016/j.jasrep.2020.102538CrossRefGoogle Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937938.CrossRefGoogle ScholarPubMed
Brand, W, Coplen, A, Tyler, B, Vogl, J, Rosner, M, Prohaska, T. 2014. Assessment of international reference materials for isotoperatio analysis (IUPAC Technical Report). Pure. Appl. Chem. 86(3):425467.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Bronk Ramsey, C. 2021. OxCal v4.4.4 r:5. The Oxford Radiocarbon Accelerator Unit, University of Oxford, available at: https://c14.arch.ox.ac.uk/oxcal/OxCal.html.Google Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730.CrossRefGoogle Scholar
Calandra, S, Cantisani, E, Salvadori, B, Barone, S, Liccioli, L, Fedi, M, Garzonio, CA. 2022. Evaluation of ATR-FTIR spectroscopy for distinguish anthropogenic and geogenic calcite. Journal of Physics: Conference Series 2204(1):012048.Google Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nucl. Instrum. Meth. Phys. Res. B 268:867870.CrossRefGoogle Scholar
Chu, V, Regev, L, Weiner, S, Boaretto, E. 2008. Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. Journal of Archaeological Science 35:905911.CrossRefGoogle Scholar
Daugbjerg, TS, Lindroos, A, Heinemeier, J, Ringbom, Å, Barrett, GT, Michalska, D, Hajdas, I, Raja, R, Olsen, J. 2020. A field guide to mortar sampling for radiocarbon dating. Archaeometry 63(5):11211140.CrossRefGoogle Scholar
Folk, RL, Valastro SJr. 1976. Successful technique for dating of lime mortars by carbon-14. Journal of Field Archaeology 3:203208.CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, et al. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-Comparison Study (MODIS). Radiocarbon 59(6):18451858. doi: 10.1017/RDC.2017.112 CrossRefGoogle Scholar
Hayen, R, Van Strydonck, M, Boaretto, E, Lindroos, A, Heinemeier, J, Ringbom, Å, Hueglin, S, Michalska, D, Hajdas, I, Marzaoili, F, et al. 2016. Analysis and characterisation of historic mortars for absolute dating. In: Proceedings of the 4th Historic Mortars Conference (HMC 2016). p. 656–667.Google Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, Å, Michalska, D, Hajdas, I, Hueglin, S, et al. 2017. Mortar dating methodology: assessing recurrent issues and needs for future research. Radiocarbon 59(6):18591871.CrossRefGoogle Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nucl. Instr. and Methods B 123:487495.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.CrossRefGoogle Scholar
Krajcar Bronić, I, Horvatinčić, N, Sironić, A, Obelić, B, Barešić, J, Felja, I. 2010. A new graphite preparation line for AMS 14C dating in the Zagreb Radiocarbon Laboratory. Nucl. Instrum. Meth. Phys. Res. B 268 (7/8):943946.CrossRefGoogle Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201(4920):742.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Brasken, M, Sveinbjornsdottir, A. 2007. Mortar dating using AMS C-14 and sequential dissolution: Examples from medieval, non-hydraulic lime mortars from the Aland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Ringbom, A, Heinemeier, J, Hodgins, G, Sonck-Koota, P, Sjöberg, P, Lancaster, L, Kaisti, R, Brock, F, Ranta, H, Caroselli, M, Lugli, S. 2018. Radiocarbon dating historical mortars: Lime lumps and/or binder carbonate. Radiocarbon 60(3):875899.CrossRefGoogle Scholar
Lindroos, A, von Konow, T. 1997. 14C dating of lime mortar - preparation of the sample, a challenge for the geologist and the mineral chemist. Vol. 11 (1997): Proceedings of the VII Nordic Conference on the Application of Scientific Methods in Archaeology, Savonlinna, Finland, 7–11 September 1996.Google Scholar
Mateos Cruz, P. 1999. La basílica de Santa Eulalia de Mérida. Anejos de Archivo Español de Arqueología XIX, Madrid.Google Scholar
Michalska, D. 2019. Influence of different pretreatments on mortar dating results. Nuclear Instruments and Methods in Physics Research Section B 456:236246.CrossRefGoogle Scholar
Michalska, D, Czernik, J, Goslar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS), Radiocarbon 59(6):18911906.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.CrossRefGoogle Scholar
Nawrocka, D, Czernik, J, Goslar, T. 2009. 14C Dating of carbonate mortars from Polish and Israeli Sites. Radiocarbon 51(2):857866.CrossRefGoogle Scholar
Pereira, C. 2015. About the oldest known Christian Buildings in the extreme south of Lusitania: The Case of Quinta De Marim (Olhão, Algarve, Portugal). Archaeopress Publishing Ltd Gordon House 276 Banbury Road Oxford OX2 7ED. 22 p.Google Scholar
Poduska, KM, Regev, L, Berna, F, Mintz, E, Milevski, I, Kahalaily, H, Weiner, S, Boaretto, E. 2012. Plaster characterization at the PPNB site of Yiftahael (Israel) including the use of 14C: implication for plaster production, preservation, and dating. Radiocarbon 54(3–4):887896.CrossRefGoogle Scholar
Ranta, H, Hansson, J, Lindroos, A, Ringbom, Å, Heinemeier, J, Brock, F, Hodgins, G. 2009. Om dateringen av Gotlands medeltida kyrkor. Hikuin 36:85100.Google Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Ringbom, Å. 2011a. The voice of the Åland churches. New light on medieval art, architecture and history. Åland’s Museum.Google Scholar
Ringbom, Å, Heinemeier, J, Lindroos, A, Brock, F. 2011b. Mortar dating and Roman pozzolana, results and interpretations. Comm. Hum. Litt. 128:187208.Google Scholar
Roosval, J. 1911. Die Kirchen Gotlands. Ein Beitrag zur mittelalterlichen Kunstgeschichte Schwedens. Nordstets. 231 p.Google Scholar
Sironić, A, Borković, D, Barešić, J, Krajcar Bronić, I, Cherkinsky, A, Kitanovska, L, Štrukil, V, Čukovska, L. 2019. Radiocarbon Dating of Mortar from the Aqueduct in Skopje. Radiocarbon 61(5):12391251.CrossRefGoogle Scholar
Sironić, A, Cherkinsky, A, Borković, D, Damiani, S, Barešić, J, Visković, E, Krajcar Bronić, I. 2023. A new approach on data extrapolation for mortar dating in the Zagreb Radiocarbon Laboratory. Nucl. Instrum. Meth. Phys. Res. B 537:119124.CrossRefGoogle Scholar
Sironić, A, Krajcar Bronić, I, Horvatinčić, N, Barešić, J, Obelić, B, Felja, I. 2013. Status report on the Zagreb radiocarbon laboratory—AMS and LSC results of VIRI intercomparison samples. Nucl. Instrum. Meth. Phys. Res. B 294:185188. doi: 10.1016/j.nimb.2012.01.048 CrossRefGoogle Scholar
Sonninen, E, Jungner, H. 2001. An improvement in preparation of mortar for radiocarbon dating. Radiocarbon 43(2A):271273. doi: 10.1017/S0033822200038108 CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(2):355363.CrossRefGoogle Scholar
Stuiver, M, Smith, CS. 1965. 6th International Conference on Radiocarbon and Tritium Dating, Pullman, WA. p. 338–363.Google Scholar
Toffolo, MB, Regev, L, Dubernet, S, Lefrais, Y, Boaretto, E. 2019. FTIR-based crystallinity assessment of aragonite–calcite mixtures in archaeological lime binders altered by diagenesis. Minerals 9(2):121. https://doi.org/10.3390/min9020121 CrossRefGoogle Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Marechal, J. 1986. The influence of contaminating (fossil) carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702710. doi: 10.1017/S003382220000792X CrossRefGoogle Scholar
Van Strydonck, M, Hayen, R, Boudin, M, Van den Brande, T, Burguera, M, Ramis, D, De Mulder, G. 2015. 14C dating of the lime burial of Cova de Na Dent (Mallorca, Spain): optimization of the sample preparation and limitations of the method. Radiocarbon 57(1):161171. doi: 10.2458/azu_rc.57.18195 CrossRefGoogle Scholar
Van Strydonck, M, Van Der Borg, K, De Jong, A, Keppens, E. 1992. Radiocarbon dating of lime fractions and organic material from buildings. Radiocarbon 34(3):873879.CrossRefGoogle Scholar
Supplementary material: File

Sironić et al. supplementary material 1

Sironić et al. supplementary material
Download Sironić et al. supplementary material 1(File)
File 16.2 KB
Supplementary material: File

Sironić et al. supplementary material 2

Sironić et al. supplementary material
Download Sironić et al. supplementary material 2(File)
File 120.5 KB