Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T01:49:00.489Z Has data issue: false hasContentIssue false

Radiocarbon in the Atmosphere of the Žlkovce Monitoring Station of the Bohunice NPP: 25 Years of Continuous Monthly Measurements

Published online by Cambridge University Press:  09 February 2016

P P Povinec*
Affiliation:
Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava, Slovakia
A Šivo
Affiliation:
Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava, Slovakia
M Ješkovský
Affiliation:
Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava, Slovakia
I Svetlik
Affiliation:
Nuclear Physics Institute CAS, 180 86 Prague, Czech Republic
M Richtáriková
Affiliation:
Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava, Slovakia
J Kaizer
Affiliation:
Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Nuclear Physics and Biophysics, 84248 Bratislava, Slovakia
*
2.Corresponding author. Email: [email protected].

Abstract

Radiocarbon variations in the atmosphere have been observed at the Žlkovce monitoring station of the Bohunice nuclear power plant (NPP), situated only 5 km ESE from the NPP. The observed 14C levels provide unique evidence of a decreasing long-term impact of the Bohunice NPP on the region. Simultaneously, decreasing emissions of fossil fuel carbon dioxide in the atmosphere of the monitoring site have been found. The observed Δ14C variations with time have attenuating amplitudes and decreasing mean values, showing maxima in summer and minima in winter, the latter primarily caused by increased emission of fossil CO2 in winter months. Sporadic short-term releases of 14C from the Bohunice NPP were observed at the Žlkovce station. The annual atmospheric Δ14C variations compared with tree-ring data collected at the Žlkovce village show reasonable agreement. The observed Δ14C levels after 2005 are close to the European clean-air levels as measured at the Jungfraujoch (3450 m asl) monitoring station.

Type
Articles
Copyright
Copyright © 2015 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burchuladze, AA, Pagava, SV, Povinec, P, Togonidze, GI, Usašev, S. 1980. Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287(5780):320–2.CrossRefGoogle Scholar
Burchuladze, AA, Chudý, M, Eristavy, IV, Pagava, SV, Povinec, P, Šivo, A, Togonidze, GI. 1989. Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31(3):771–6.Google Scholar
Chudý, M, Povinec, P. 1982. Radiocarbon production in CO2 coolant of nuclear reactor. Acta Universitatis Comenianae, Physica 22:127–31.Google Scholar
Cimbák, S, Čechová, A, Grgula, M, Povinec, P, Šivo, A. 1986. Anthropogenic radionuclides 3H, 14C, 85Kr and 133Xe in the atmosphere around nuclear power reactors. Nuclear Instruments and Methods in Physics Research B 17(5–6):560–3.CrossRefGoogle Scholar
Hertelendi, E, Uchrin, G, Ormai, P. 1989. 14C releases in various chemical forms with gaseous effluents from the Paks nuclear power plant. Radiocarbon 31(3):754–61.CrossRefGoogle Scholar
Ješkovský, M, Povinec, PP, Steier, P, Šivo, A, Richtáriková, M, Golser, R. 2015. Retrospective study of 14C concentration in the vicinity of NPP Jaslovské Bohunice using tree rings and the AMS technique. Nuclear Instruments and Methods in Physics Research B. doi:10.1016/j.nimb.2015.04.036.Google Scholar
Kunz, C. 1985. Carbon–14 discharge at three light–water reactors. Health Physics 49(1):2535.CrossRefGoogle ScholarPubMed
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.Google Scholar
Levin, I, Kromer, B, Barabas, M, Munnich, KO. 1988. Environmental distribution and long-term dispersion of reactor 14CO2 around two German nuclear power plants. Health Physics 54:149–56.CrossRefGoogle ScholarPubMed
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211–6.Google Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62(1):2646.CrossRefGoogle Scholar
Loosli, HH, Oeschger, H. 1989. 14C in the environment of Swiss nuclear installations. Radiocarbon 31(3):747–53.CrossRefGoogle Scholar
Magnusson, A, Stenström, K, Skog, G, Adliene, D, Adlys, G, Hellborg, R, Olariu, A, Zakaria, M, Rääf, C, Mattsson, S. 2004. Levels of 14C in the terrestrial environment in the vicinity of two European nuclear power plants. Radiocarbon 46(2):863–8.Google Scholar
Milton, GM, Kramer, SJ, Brown, RM, Repta, CJW, King, KJ, Rao, RR. 1995. Radiocarbon dispersion around Canadian nuclear facilities. Radiocarbon 37(2):485–96.Google Scholar
Ministry of the Environment of the Slovak Republic (MESR). 2005. The Second National Communication on Climate Change . Bratislava. 97 p.Google Scholar
Obelić, B, Krajcar-Bronić, I, Srdoš, D, Horvatinšić, N. 1986. Environmental 14C levels around the 632 MWe nuclear power plant Krsko in Yugoslavia. Radiocarbon 28(2A):644–8.Google Scholar
Povinec, P. 1972. Preparation of methane gas filling for proportional 3H and 14C counters. Radiochemical and Radioanalytical Letters 9:127–35.Google Scholar
Povinec, P. 1978. Multiwire proportional counters for low-level 14C and 3H measurements. Nuclear Instruments and Methods 156(3):441–5.Google Scholar
Povinec, P, Šáro, S, Chudý, M, Seliga, M. 1968. The rapid method of carbon-14 counting in atmospheric carbon dioxide. International Journal of Applied Radiation and Isotopes 19(12):877–81.CrossRefGoogle ScholarPubMed
Povinec, P, Šivo, A, Chudý, M. 1986a. Seasonal variations of anthropogenic radiocarbon in the atmosphere. Nuclear Instruments and Methods B 17(5–6):556–9.CrossRefGoogle Scholar
Povinec, P, Chudý, M, Šivo, A. 1986b. Anthropogenic radiocarbon: past, present and future. Radiocarbon 28(2A):668–72.CrossRefGoogle Scholar
Povinec, PP, Šivo, A, Šimon, J, Holý, K, Chudý, M, Richtáriková, M, Morávek, J. 2008. Impact of the Bohunice nuclear power plant on atmospheric radiocarbon. Applied Radiation and Isotopes 66(11):1686–90.CrossRefGoogle ScholarPubMed
Povinec, PP, Chudý, M, Šivo, A, Šimon, J, Holý, K, Richtáriková, M. 2009. Forty years of atmospheric radiocarbon monitoring around the Bohunice nuclear power plant, Slovakia. Journal of Environmental Radioactivity 100(2):125–30.CrossRefGoogle ScholarPubMed
Povinec, PP, Holý, K, Chudý, M, Šivo, A, Sýkora, I, Ješkovský, M, Richtáriková, M. 2012. Long-term variations of 14C and 137Cs in the Bratislava air: implications of different atmospheric transport processes. Journal of Environmental Radioactivity 108:3340.CrossRefGoogle ScholarPubMed
Povinec, PP, Svetlik, I, Ješkovský, M, Šivo, A, John, J, Špendlíková, I, Němec, M, Kušera, J, Richtáriková, M, Breier, R, Fejgl, M, Černý, R. 2015. Joint Bratislava–Prague studies of radionuclides in the environment using accelerator mass spectrometry and radiometric methods. Journal of Radioanalytical and Nuclear Chemistry. doi:10.1007/s10967-014-3618-8.Google Scholar
Roussel-Debet, S, Gontier, G, Siclet, F, Fournier, M. 2006. Distribution of carbon 14 in the terrestrial environment close to French nuclear power plants. Journal of Environmental Radioactivity 87(3):246–59.Google Scholar
Stenström, K, Erlandsson, B, Hellborg, R, Wiebert, A, Skog, G. 1996. Environmental levels of carbon-14 around a Swedish nuclear power plant measured with accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 113(1–4):474–6.CrossRefGoogle Scholar
Stenström, K, Skog, G, Thornberg, C, Erlandsson, B, Hellborg, R, Mattsson, S, Persson, P. 1998. 14C levels in the vicinity of two Swedish nuclear power plants and at two “clean-air” sites in southernmost Sweden. Radiocarbon 40(1):433–8.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Svetlik, I, Molnár, M, Svingor, E, Rinyu, L, Futó, I, Michalek, V. 2007. Biomonitoring of 14C in the vicinity of NPPs. In: Proceedings, Regional and Global Aspects of Radiation Protection. Brasov: IRPA. p 24–8.Google Scholar
Svetlik, I, Povinec, PP, Molnár, M, Vána, M, Šivo, A, Bujtás, T. 2010. Radiocarbon in the air of central Europe: long-term investigations. Radiocarbon 52(2–3):823–34.Google Scholar
Svetlik, I, Fejgl, M, Turek, K, Michalek, V, Tomaskova, L. 2012. 14C studies in the vicinity of the Czech NPPs. Journal of Radioanalytical and Nuclear Chemistry 292(2):689–95.CrossRefGoogle Scholar
Uchrin, G, Hertelendi, E, Volent, G, Slávik, O, Morávek, J, Kobal, I, Vokal, B. 1998. 14C measurements at PWR-type nuclear power plants in three middle European countries. Radiocarbon 40(1):439–46.Google Scholar
Usašev, S, Povinec, PP, Chudý, M, Seliga, M. 1973. Bratislava radiocarbon measurements I. Radiocarbon 15(3):443–50.Google Scholar