Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T03:30:57.707Z Has data issue: false hasContentIssue false

Radiocarbon in the Air of Central Europe: Long-Term Investigations

Published online by Cambridge University Press:  18 July 2016

I Svetlik*
Affiliation:
Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, CZ-180 86 Prague, Czech Republic
P P Povinec
Affiliation:
Faculty of Mathematics, Physics and Informatics, Comenius University, SK-842 48 Bratislava, Slovakia
M Molnár
Affiliation:
Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Bem tér 18/c, 4026 Debrecen, Hungary
M Vána
Affiliation:
Czech Hydrometeorological Institute, CZ-394 22 Košetice Observatory, Czech Republic
A Šivo
Affiliation:
Faculty of Mathematics, Physics and Informatics, Comenius University, SK-842 48 Bratislava, Slovakia
T Bujtás
Affiliation:
Paks nuclear power plant, Paks, Hungary
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Regional levels of radiocarbon have been monitored in order to investigate the impact of fossil fuel combustion on the activity of atmospheric 14CO2 in central Europe. Data from atmospheric 14CO2 monitoring stations in the Czech Republic, Slovakia, and Hungary for the period 2000–2008 are presented and discussed. The Prague and Bratislava monitoring stations showed a distinct local Suess effect when compared to the Jungfraujoch clean-air monitoring station. However, during the summer period, statistically insignificant differences were observed between the low-altitude stations and the high-mountain Jungfraujoch station. 14C data from the Hungarian monitoring locality at Dunaföldvár and the Czech monitoring station at Košetice, which are not strongly affected by local fossil CO2 sources, indicate similar grouping and amplitudes, typical for a regional Suess effect.

Type
Methods, Applications, and Developments
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Burchuladze, AA, Pagava, SV, Povinec, P, Togonidze, GI, Usačev, S. 1980. Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287(5780):320–2.Google Scholar
Burchuladze, AA, Chudy, M, Eristavy, IV, Pagava, SV, Povinec, P, Šivo, A, Togonidze, GI. 1989. Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon 31(3):771–6.CrossRefGoogle Scholar
Chudy, M, Povinec, P. 1982. Radiocarbon production in CO2 coolant of a nuclear reactor. Acta Universitatis Comenianae, Physica 22:127–31.Google Scholar
Cimbák, Š, Čechová, A, Grgula, M, Povinec, P, Šivo, A. 1986. Anthropogenic radionuclides 3H, 14C, 85Kr, and 133Xe in the atmosphere around nuclear power reactors. Nuclear Instruments and Methods in Physics Research B 17(5–6):560–3.CrossRefGoogle Scholar
Csongor, É, Hertelendi, E. 1986. Low-level counting facility for 14C dating. Nuclear Instruments and Methods in Physics Research B 17(5–6):493–5.Google Scholar
Csongor, É, Szabó, I, Hertelendi, E. 1982. Preparation of counting gas of proportional counters for radiocarbon dating. Radiochemical and Radioanalytical Letters 55:303–7.Google Scholar
Denning, AS, Takahashi, T, Friedlingstein, P. 1999. Can a strong atmospheric CO2 rectifier effect be reconciled with a “reasonable” carbon budget? Keynote Perspective. Tellus B 51(2):249–53.CrossRefGoogle Scholar
Goulden, CH. 1956. Methods of Statistical Analysis. 2nd edition. New York: Wiley. p 5055.Google Scholar
Hertelendi, E. 1990. Sources of random error in the Debrecen radiocarbon laboratory. Radiocarbon 32(3):283–7.CrossRefGoogle Scholar
Hertelendi, E, Csongor, É, Záborszky, L, Molnár, J, Gál, J, Györffi, M, Nagy, S. 1989a. A counter system for high-precision 14C dating. Radiocarbon 31(3):399406.CrossRefGoogle Scholar
Hertelendi, E, Uchrin, G, Ormai, P. 1989b. 14C releases in various chemical forms with gaseous effluents from the Paks nuclear power plant. Radiocarbon 31(3):754–61.CrossRefGoogle Scholar
Hesshaimer, V, Heimann, V, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370(6486):201–3.Google Scholar
Kuc, T, Zimnoch, M. 1998. Changes of the CO2 sources and sinks in a polluted urban area (southern Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon 40(1):417–23.Google Scholar
Kunz, C. 1985. Carbon-14 discharge at three light-water reactors. Health Physics 49(1):2535.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 46(1):6980.CrossRefGoogle Scholar
Levin, I, Kromer, B. 1997. Twenty years of high-precision atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.Google Scholar
Levin, I, Münnich, KO, Weiss, W. 1980. The effect of anthropogenic CO2 and 14C sources on the dilution of 14C in atmosphere. Radiocarbon 22(2):379–81.CrossRefGoogle Scholar
Levin, I, Kromer, B, Barabas, M, Münnich, KO. 1988. Environmental distribution and long-term dispersion of reactor 14CO2 around two German nuclear power plants. Health Physics 54:149–56.Google Scholar
Levin, I, Graul, R, Trivett, NBA. 1995. Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus B 47:2334.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194, doi:10.1029/2002GL018477.Google Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211–6.CrossRefGoogle ScholarPubMed
Loosli, HH, Oeschger, H. 1989. 14C in the environment of Swiss nuclear installations. Radiocarbon 31(3):747–53.CrossRefGoogle Scholar
McCartney, P, Baxter, MS, McKay, K, Scott, EM. 1986. Global and local effects of 14C discharges from the nuclear fuel cycle. Radiocarbon 28(2A):634–43.Google Scholar
Meijer, HAJ, van der Plicht, J, Gislefoss, JS, Nydal, R. 1995. Long-term atmospheric records near Groningen, Fruholmen, and Izaña. Radiocarbon 37(1):3950.CrossRefGoogle Scholar
Meijer, HAJ, Pertuisot, MH, van der Plicht, J. 2006. High-accuracy 14C measurements for atmospheric CO2 samples by AMS. Radiocarbon 48(3):355–72.CrossRefGoogle Scholar
Milton, GM, Kramer, SJ, Brown, RM, Repta, CJW, King, KJ, Rao, RR. 1995. Radiocarbon dispersion around Canadian nuclear facilities. Radiocarbon 37(2):485–96.CrossRefGoogle Scholar
Molnár, M, Bujtás, T, Svingor, É, Futó, I, Svetlik, I. 2007. Monitoring of atmospheric excess 14C around Paks nuclear power plant, Hungary. Radiocarbon 49(2):1031–43.Google Scholar
Molnár, M, Haszpra, L, Svingor, É, Major, I, Svetlik, I. 2010. Atmospheric fossil fuel CO2 measurement using a field unit in a central European city during the winter of 2008/09. Radiocarbon 52(2–3):835–45.CrossRefGoogle Scholar
Nakazawa, T, Ishizawa, M, Higuchi, K, Trivett, NBA. 1997. Two curve fitting methods applied to CO2 flask data. EnvironMetrics 8(3):197218.3.0.CO;2-C>CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1965. Distribution of radiocarbon from nuclear tests. Nature 206(4988):1029–31.CrossRefGoogle ScholarPubMed
Obelić, B, Krajcar-Bronić, I, Srdoč, D, Horvatinčić, N. 1986. Environmental 14C levels around the 632MWe nuclear power plant Krsko in Yugoslavia. Radiocarbon 28(2A):644–8.Google Scholar
Otlet, RL, Walker, AJ, Fulker, MJ. 1990. Survey of the dispersion of 14C in the vicinity of the UK reprocessing site at Sellafield. Radiocarbon 32(1):2330.CrossRefGoogle Scholar
Palstra, SWL, Karstens, U, Streurman, HJ, Meijer, HAJ. 2008. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: measurements and model comparison. Journal of Geophysical Research 113(D21): D21305, doi:10.1029/2008JD010282.CrossRefGoogle Scholar
Povinec, P. 1972. Very low background proportional counter for tritium dating. Nuclear Instruments and Methods 101(3):613–4.CrossRefGoogle Scholar
Povinec, P. 1978. Multiwire proportional counters for low-level 14C and 3H measurements. Nuclear Instruments and Methods in Physics Research 156(3):441–5.Google Scholar
Povinec, P, Saro, S, Chudy, M, Seliga, M. 1968. Rapid method of carbon-14 counting in atmospheric carbon dioxide. International Journal of Applied Radiation and Isotopes 19(12):877–81.CrossRefGoogle ScholarPubMed
Povinec, P, Šivo, A, Chudy, M. 1986a. Seasonal variations of anthropogenic radiocarbon in the atmosphere. Nuclear Instruments and Methods in Physics Research B 17(5–6):556–9.Google Scholar
Povinec, P, Chudy, M, Šivo, A. 1986b. Anthropogenic radiocarbon: past, present and future. Radiocarbon 28(2A):668–72.Google Scholar
Povinec, PP, Šivo, A, Šimon, J, Holy, K, Chudy, M, Richtáriková, M, Morávek, J. 2008. Impact of the Bohunice Nuclear Power Plant on atmospheric radiocarbon. Applied Radiation and Isotopes 66(11):1686–90.Google Scholar
Povinec, PP, Chudy, M, Šivo, A, Šimon, J, Holy, K, Richtáriková, M. 2009. Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovakia. Journal of Environmental Radioactivity 100(2):125–30.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004: Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):1299–304.Google Scholar
Roussel-Debet, S, Gontier, G, Siclet, F, Fournier, M. 2006. Distribution of carbon 14 in the terrestrial environment close to French nuclear power plants. Journal of Environmental Radioactivity 87(3):246–59.CrossRefGoogle ScholarPubMed
Segl, M, Levin, I, Schoch-Fischer, H, Münnich, M, Kromer, B, Tschiersch, J, Münnich, KO. 1983. Anthropogenic 14C variations. Radiocarbon 25(2):583–92.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415–7.Google Scholar
Svetlik, I, Molnár, M, Svingor, E, Futó, I, Pintér, T, Rulík, P, Michálek, V. 2006. Monitoring of atmospheric 14CO2 in central European countries. Czechoslovak Journal of Physics 56D(4):291–7.Google Scholar
Svetlik, I, Povinec, PP, Molnár, M, Meinhardt, F, Michálek, V, Simon, J, Svingor, E. 2010. Estimation of long-term trends in the tropospheric 14CO2 activity concentration. Radiocarbon 52(2–3):815–22.Google Scholar
Uchrin, G, Csaba, E, Hertelendi, E, Ormai, P, Barnabas, I. 1992. 14C release from a Soviet-designed pressurized water reactor nuclear power plant. Health Physics 63:651–5.Google Scholar
Uchrin, G, Hertelendi, E, Volent, G, Slávik, O, Morávek, J, Kobal, I, Vokal, B. 1998. 14C measurements at PWR-type nuclear power plants in three middle European countries. Radiocarbon 40(1):439–46.Google Scholar
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2000. Exposures from natural and man-made sources of radiation. Report to the General Assembly 1. New York: United Nations.Google Scholar
Usačev, S, Povinec, P, Chudy, M, Šeliga, M. 1973. Bratislava radiocarbon measurements I. Radiocarbon 15(3):443–50.Google Scholar
Veres, M, Uchrin, G, Hertelendi, E, Csaba, E, Barnabás, I, Ormai, P. 1995. Concentration of radiocarbon and its chemical forms in gaseous effluents, environmental air, nuclear waste and primary water of a pressurized water reactor power plant in Hungary. Radiocarbon 37(2):497504.Google Scholar