Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T14:32:52.307Z Has data issue: false hasContentIssue false

Radiocarbon Dates from Soil Profiles in the Teotihuacán Valley, Mexico: Indicators of Geomorphological Processes

Published online by Cambridge University Press:  18 July 2016

Emily McClung de Tapia*
Affiliation:
Laboratorio de Paleoetnobotánica y Paleoambiente, Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México
Irma Domínguez Rubio
Affiliation:
Deceased. Departamento del Hombre y su Medio Ambiente, Universidad Autónoma Metropolitana-Xochimilco
Jorge Gama Castro
Affiliation:
Departamento de Edafología, Instituto de Geología, Universidad Nacional Autónoma de México
Elizabeth Solleiro
Affiliation:
Departamento de Edafología, Instituto de Geología, Universidad Nacional Autónoma de México
Sergey Sedov
Affiliation:
Departamento de Edafología, Instituto de Geología, Universidad Nacional Autónoma de México
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon dates largely obtained from bulk soil samples in 24 soil profiles in the Teotihuacán Valley, Mexico, are reported insofar as they represent a first step towards developing a sequence of soil formation, erosion, vegetation change, and human impact during the Holocene. Limitations of 14C dating in the area are considered, particularly the absence of charcoal in sediments and poor preservation of pollen. A broad temporal scheme is proposed to guide future research in which 4 periods are defined: ∼5000–2000 BP (relative stability with short, intermittent episodes of erosion); ∼2000–1500 BP (erosion-sedimentation, deforestation, and intensive agriculture); ∼1500–1000 BP (relative stability, depopulation, and partial recovery of the landscape); and ∼1000–500 BP (erosion-sedimentation, deforestation, and intensive agriculture).

Type
Date Lists
Copyright
Copyright © 2005 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alexandrovskiy, AL, Chichagova, OA. 1998. The 14C age of humic substances in paleosols. Radiocarbon 40(2): 991–7.Google Scholar
Barba, LA. 1995. El impacto humano en la paleogeografía de Teotihuacán [PhD dissertation]. Mexico: Facultad de Filosofía y Letras, Universidad Nacional Autonoma de México.Google Scholar
Beckmann, GG, Hubble, GD. 1974. The significance of radiocarbon measurements of humus from Krasnozems (Ferralsols) in subtropical Australia. Transactions of the 10th International Congress on Soil Science 6: 362–71.Google Scholar
Caballero, M, Lozano, S, Ortega, B, Urrutia, J, Macías, JL. 1999. Environmental characteristics of Lake Tecocomulco, northern Basin of Mexico, for the last 50,000 years. Journal of Paleolimnology 22:399411.CrossRefGoogle Scholar
Campbell, CA, Paul, EA, Rennie, DA, McCallum, KJ. 1967. Factors affecting the accuracy of the carbon dating method of analysis to soil humus studies. Soil Science 104:81–4.Google Scholar
Cabrera-Castro, R. 2002. Nuevas evidencias arqueológicas del manejo de agua en Teotihuacán. El campo y la ciudad. Paper presented at the III Mesa Redonda de Teotihuacán, Centro de Estudios Teotihuacános, Zona Arqueológica de Teotihuacán, Mexico.Google Scholar
Charlton, TH. 1979. Investigaciones arqueológicas en el municipio de Otumba, temporada de 1978, 5a parte: el riego y el intercambio: la expansión de Tula [unpublished report submitted to the Consejo de Arqueología]. Iowa City: University of Iowa.Google Scholar
Charlton, TH. 1990. Operation 12, Field 20, irrigation system excavations. Preliminary report on recent research in the Otumba City State. In: Charlton, TH, Nichols, DL, editors. Mesoamerican Research Report 3. Iowa City: University of Iowa. p 210–2.Google Scholar
Cid, JR. 1998. Diacronía y sincronía en el sector oeste de la antigua ciudad de Teotihuacán. In: Brambila, R, Cabrera, R, coordinators. Los Ritmos de Cambio en Teotihuacán: Reflexiones y Discusiones de su Cronología. Mexico: Instituto Nacional de Antropología e Historia. p 317–22.Google Scholar
Cordova, C. 1997. Landscape transformation in Aztec and Spanish colonial Texcoco, Mexico [PhD dissertation]. Austin: University of Texas at Austin.Google Scholar
García Cook, A. 1981. The historical importance of Tlaxcala in the cultural development of the central highlands. In: Sabloff, JA, editor. Supplement to the Handbook of Middle American Indians, V. I. Archaeology. Austin: University of Texas Press. p 244–76.Google Scholar
Geyh, MA, Benzler, JH, Roeschman, G. 1971. Problems of dating Pleistocene and Holocene soils by radiometric methods. In: Yaalon, DH, editor. Paleopedology: Origin, Nature and Dating of Paleosols. Jerusalem: International Society of Soil Science and Israel Universities Press. p 6375.Google Scholar
Heine, K. 1987. Anthropogenic sedimentological changes during the Holocene in Mexico and Central America. Striae 26:5163.Google Scholar
Heine, K. 2003. Paleopedological evidence of human-induced environmental change in the Puebla-Talxcala area (Mexico) during the last 3500 years. Revista Mexicana de Ciencias Geológicas 20(3):235–44.Google Scholar
Herrera, R, Tamers, MA. 1971. Radiocarbon dating of tropical soil associations in Venezuela. In: Yaalon, DH, editor. Paleopedology: Origin, Nature and Dating of Paleosols. Jerusalem: International Society of Soil Science and Israel Universities Press. p 109–15.Google Scholar
Hidalgo, C. 1996. Étude d'horizons indurés à comportement de fragipan, appelés tepetates, dans les sols volcaniques de la vallée de México. Contribución à la connaissance de leurs caractères et de leur formation [PhD dissertation]. Paris: Université Henri Poincaré, Nancy I, Thèses et documents microfichés nr 146. Orstom éditions.Google Scholar
INEGI. 1983. Texcoco, E14B21 (Topografía), 1:50,000 [map]. Mexico: Instituto Nacional de Estadística, Geografia e Informática.Google Scholar
Kovar, A. 1970. The physical and biological environment of the Basin of México. The natural environment, contemporary occupations and 16th-century population of the valley. In: Sanders, W, Kovar, A, Charlton, T, Diehl, R. The Teotihuacán Valley Project. V. I. Occasional Papers in Anthropology nr 10. University Park: Pennsylvania State University. p 1367.Google Scholar
Lozano-García, MS, Ortega-Guerrero, B. 1998. Late Quaternary environmental changes of the central part of the Basin of México; correlation between Texcoco and Chalco basins. Review of Palaeobotany and Palynology 99:7793.CrossRefGoogle Scholar
Lozano-García, MS, Ortega-Guerrero, B, Caballero-Miranda, M, Urrutia-Fucugauchi, J. 1993. Late Pleistocene and Holocene paleoenvironments of Chalco Lake, central México. Quaternary Research 40:332–42.CrossRefGoogle Scholar
Matthews, J. 1985. Radiocarbon dating of surface and buried soils: principles, problems and prospects. In: Richards, K, Arlett, R, Ellis, S, editors. Geomorphology and Soils. London: Allen and Unwin. p 271–88.Google Scholar
McClung de Tapia, E. 2000. Prehispanic agricultural systems in the Basin of Mexico. In: Lentz, D, editor. Imperfect Balance. Landscape Transformations in the Pre-Columbian Americas. New York: Columbia University Press. p 121–46.Google Scholar
McClung de Tapia, E, Solleiro-Rebolledo, E, Gama-Castro, J, Villalpando, JL, Sedov, S. 2003. Paleosols in the Teotihuacán Valley, Mexico: evidence for paleoenvironment and human impact. Revista Mexicana de Ciencias Geológicas 20(3):270–82.Google Scholar
Miehlich, G. 1991. Chronosequences of volcanic ash soils. Hamburger Bodenkündliche Arbeiten 15. Hamburg.Google Scholar
Millon, R, Drewitt, B, Cowgill, G. 1973. Urbanization at Teotihuacán V. I. The Teotihuacán Map. Part 2. Austin: University of Texas Press.Google Scholar
Mooser, F. 1968. Geología, naturaleza y desarrollo del Valle de Teotihuacán. In: Lorenzo, JL, editor. Materiales par el Estudio de Teotihuacán. Mexico: Instituto Nacional de Antropología e Historia. p 3138.Google Scholar
Nichols, DL. 1988. Infrared aerial photography and prehispanic irrigation at Teotihuacán: the Tlajinga canals. Journal of Field Archaeology 15:1727.Google Scholar
Nichols, DL, Frederick, C. 1993. Irrigation canals and chinampas. Recent research in the northern Basin of Mexico. Research in Economic Anthropology (Supplement) 7:123–50.Google Scholar
Nichols, DL, Spence, M, Borland, M. 1991. Watering the fields of Teotihuacán. Early irrigation at the ancient city. Ancient Mesoamerica 2:119–29.CrossRefGoogle Scholar
Parsons, JR. 1968. Teotihuacán, Mexico, and its impact on regional demography. Science 162:872–7.Google ScholarPubMed
Peña, D, Zebrowski, C. 1992. Estudio de los suelos volcánicos endurecidos (tepetates) de las cuencas de México y Tlaxcala (México). Informe del mapa morfopedológico de la vertiente occidental de la Sierra Nevada. ORSTOM-Paris/Justus Liebig Universität-Giessen/Colegio de Postgraduados-Montecillo/Universidad Autónoma de Tlaxcala. Comisión des Communautés Européenes. Contrat CCE/ORSTOM nr T52-0212.Google Scholar
Pérez, J. 2003. La agricultura en Teotihuacán. Una forma de modificación al paisaje [Master's thesis]. Mexico: Facultad de Filosofía y Letras, Universidad Nacional Autónoma de México.Google Scholar
Quantin, P. 1992. Etude des sol volcaniques indurés (tepetates) des bassins de México et Tlaxcala (Mexique). Rapport scientifique final. Commission des Communautés Européenes, Contrat CEE/ORSTOM no. TS2-0212.Google Scholar
Sanders, W, Parsons, J, Santley, R. 1979. The Basin of Mexico: Ecological Processes in the Evolution of a Civilization. New York: Academic Press.Google Scholar
Scharpenseel, HW. 1971. Radiocarbon dating of soils: problems, troubles, hopes. In: Yaalon, DH, editor. Paleopedology: Origin, Nature and Dating of Paleosols. Jerusalem: International Society of Soil Science and Israel Universities Press. p 7788.Google Scholar
Sedov, S, Solleiro-Rebolledo, E, Gama-Castro, JE, Vallejo-Gómez, E, González-Velázquez, A. 2001. Buried palaeosols of the Nevado de Toluca: an alternative record of Late Quaternary environmental change in central Mexico. Journal of Quaternary Science 16(4): 375–89.CrossRefGoogle Scholar
Solleiro-Rebolledo, E, Gama-Castro, E, Palacios-Mayorga, S, Shoba, SA, Sedov, SN. 1999. Late Pleistocene paleosols of central Mexico: genesis and paleoenvironmental interpretation. Eurasian Soil Science 32(10):1077–84.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C database and revised CALIB 3.0 14C age calibration program. In: Stuiver, M, Long, A, Kra, RS, editors. Calibration 1993. Radiocarbon 35(1):215–30.CrossRefGoogle Scholar
Trumbore, S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399411.CrossRefGoogle Scholar
Wang, Y, Amundson, R, Trumbore, S. 1996. Radiocarbon dating of soil organic matter. Quaternary Research 45: 282–8.CrossRefGoogle Scholar