Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T06:19:37.412Z Has data issue: false hasContentIssue false

Radiocarbon Calibration/Comparison Records Based on Marine Sediments from the Pakistan and Iberian Margins

Published online by Cambridge University Press:  09 February 2016

Edouard Bard*
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l'Arbois, BP 80, F-13545 Aix-en-Provence, France
Guillemette Ménot
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l'Arbois, BP 80, F-13545 Aix-en-Provence, France
Frauke Rostek
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l'Arbois, BP 80, F-13545 Aix-en-Provence, France
Laetitia Licari
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l'Arbois, BP 80, F-13545 Aix-en-Provence, France
Philipp Böning
Affiliation:
CEREGE, Aix-Marseille University, CNRS, IRD, Collège de France, Technopôle de l'Arbois, BP 80, F-13545 Aix-en-Provence, France
R Lawrence Edwards
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455-0231, USA
Hai Cheng
Affiliation:
Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455-0231, USA Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
Yongjin Wang
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210097, China
Timothy J Heaton
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom
*
2Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a new record of radiocarbon ages measured by accelerator mass spectrometry (AMS) on a deep-sea core collected off the Pakistan Margin. The 14C ages measured on the planktonic foraminifera Globigerinoides ruber from core MD04-2876 define a high and stable sedimentation rate on the order of 50 cm/kyr over the last 50 kyr. The site is distant from the main upwelling zone of the western Arabian Sea where 14C reservoir age is large and may be variable. Many independent proxies based on elemental analyses, mineralogy, biomarkers, isotopic proxies, and foraminiferal abundances show abrupt changes correlative with Dansgaard-Oeschger and Heinrich events. It is now common knowledge that these climatic events also affected the Arabian Sea during the last glacial period through changes in the Indian monsoon and in ventilation at intermediate depths. The stratigraphic agreement between all proxies, from fine- to coarse-size fractions, indicates that the foraminiferal 14C ages are representative of the different sediment fractions.

To build a calendar age scale for core MD04-2876, we matched its climate record to the oxygen isotopic (δ18O) profile of Hulu Cave stalagmites that have been accurately dated by U-Th (Wang et al. 2001; Southon et al. 2012; Edwards et al., submitted). Both archives exhibit very similar signatures, even for century-long events linked to monsoonal variations. For comparison, we have also updated our previous work on core MD95-2042 from the Iberian Margin (Bard et al. 2004a,b,c), whose climate record has likewise been tuned to the high-resolution δ18O Hulu Cave profile. Sophisticated and novel statistical techniques were used to interpolate ages and calculate uncertainties between chronological tie-points (Heaton et al. 2013, this issue). The data from the Pakistan and Iberian margins compare well even if they come from distant sites characterized by different oceanic conditions. Collectively, the data also compare well with the IntCal09 curve, except for specific intervals around 16 cal kyr BP and from 28 to 31 cal kyr BP. During these intervals, the data indicate that 14C is somewhat older than indicated by the IntCal09 curve. Agreement between the data from both oceanic sites suggests that the discrepancy is not due to local changes of sea-surface 14C reservoir ages, but rather that the IntCal09 curve needed to be updated in these intervals as has been done in the framework of IntCal13 (Reimer et al. 2013a, this issue).

Type
Research Article
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Altabet, MA, Higginson, MJ, Murray, DW. 2002. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2 . Nature 415(6868):159–62.CrossRefGoogle ScholarPubMed
Austin, WEN, Bard, E, Hunt, JB, Kroon, D, Peacock, JD. 1995. The 14C age of the Icelandic Vedde Ash: implications for Younger Dryas marine reservoir age corrections. Radiocarbon 37(1):5362.CrossRefGoogle Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3(6):635–45.CrossRefGoogle Scholar
Bard, E. 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta 62(12):2025–38.CrossRefGoogle Scholar
Bard, E. 2001. Paleoceanographic implications of the difference in deep-sea sediment mixing between large and fine particles. Paleoceanography 16(3):235–9.CrossRefGoogle Scholar
Bard, E, Arnold, M, Duprat, J, Moyes, J, Duplessy, J-C. 1987. Reconstruction of the last deglaciation: deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass spectrometric 14C dating. Climate Dynamics 1(2):101–12.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990a. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345(6274):405–10.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG. 1990b. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346(6283):456–8.CrossRefGoogle Scholar
Bard, E, Arnold, M, Fairbanks, RG, Hamelin, B. 1993. 230Th/234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35(1):191–9.CrossRefGoogle Scholar
Bard, E, Arnold, M, Mangerud, J, Paterne, M, Labeyrie, L, Duprat, J, Melieres, M-A, S⊘nstegaard, E, Duplessy, J-C. 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126(4):275–87.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Bard, E, Rostek, F, Turon, J-L, Gendreau, S. 2000. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289(5483):1321–4.CrossRefGoogle ScholarPubMed
Bard, E, Rostek, F, Ménot-Combes, G. 2004a. A better radiocarbon clock. Science 303(5655):178–9.CrossRefGoogle ScholarPubMed
Bard, E, Rostek, F, Ménot-Combes, G. 2004b. Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61(2):204–14.CrossRefGoogle Scholar
Bard, E, Ménot-Combes, G, Rostek, F. 2004c. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon 46(3):1189–202.CrossRefGoogle Scholar
Bond, G, Showers, W, Cheseby, M, Lotti, R, Almasi, P, de Menocal, P, Priore, P, Cullen, H, Hajdas, I, Bonani, G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341):1257–66.CrossRefGoogle Scholar
Bondevik, S, Mangerud, J, Birks, HH, Gulliksen, S, Reimer, P. 2006. Changes in North Atlantic radiocarbon reservoir ages during the Aller⊘d and Younger Dryas. Science 312(5779):1514–7.CrossRefGoogle Scholar
Böning, P, Bard, E. 2009. Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea sediments. Geochimica et Cosmochimica Acta 73(22):6771–88.CrossRefGoogle Scholar
Böning, P, Bard, E, Rose, J. 2007. Towards direct, micron-scale XRF elemental maps and quantitative profiles of wet marine sediments. Geochemistry, Geophysics, Geosystems 8(5): Q05004, doi:10.1029/2006GC001480.CrossRefGoogle Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338(6105):370–4.CrossRefGoogle ScholarPubMed
Cheng, H, Sinha, A, Wang, X, Cruz, FW, Edwards, RL. 2012. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics 39(5):1045–62.CrossRefGoogle Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–9.CrossRefGoogle Scholar
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Cheng, H, Moore, J. 2004. Radiocarbon calibration and comparison to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46(3):1127–60.CrossRefGoogle Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Dahl-Jensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Steffensen, JP, Sveinbjörnsdóttir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–20.CrossRefGoogle Scholar
Durand, N, Deschamps, P, Bard, E, Hamelin, B, Camoin, G, Thomas, AL, Henderson, GM, Yokoyama, Y, Matsuzaki, H. 2013. Comparison of 14C and U-Th ages in corals from IODP #310 cores offshore Tahiti. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Dutta, K, Bhushan, R, Somayulu, BLK. 2001. ΔR values for the northern Indian Ocean. Radiocarbon 43(2A):483–8.CrossRefGoogle Scholar
Dykoski, CA, Edwards, RL, Cheng, H, Yuan, D, Cai, Y, Zhang, M, Lin, Y, Qing, J, An, Z, Revenaugh, J. 2005. A high-resolution absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233(1–2):7186.CrossRefGoogle Scholar
Edwards, RL, Beck, JW, Burr, GS, Donahue, DJ, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260(5110):962–8.CrossRefGoogle ScholarPubMed
Edwards, RL, Cheng, H, Wang, YJ, Yuan, DX, Kelly, MJ, Kong, XG, Wang, XF, Burnett, A, Smith, E. 2013. A refined Hulu and Dongge Cave climate record and the timing of the climate change during the last glacial cycle. Earth and Planetary Science Letters, submitted.Google Scholar
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):1781–96.CrossRefGoogle Scholar
Ganssen, GM, Peeters, FJC, Metcalfe, B, Anand, P, Jung, SJA, Kroon, D, Brummer, G-JA. 2011. Quantifying sea surface temperature ranges of the Arabian Sea for the past 20 000 years. Climate of the Past 7:1337–49.CrossRefGoogle Scholar
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, MF, Ralska-Jasiewiczowa, M, Tisnerat, N, Rózanski, K, Walanus, A, Wicik, B, Wiêckowski, K. 1995. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377(6548):414–7.CrossRefGoogle Scholar
Haflidason, H, Sejrup, HP, Klitgaard Kristensen, D, Johnsen, S. 1995. Coupled response of the late glacial climatic shifts of northwest Europe reflected in Greenland ice cores: evidence from the northern North Sea. Geology 23(12):1059–62.2.3.CO;2>CrossRefGoogle Scholar
Heaton, TJ, Bard, E, Hughen, K. 2013. Elastic tie-pointing—transferring chronologies between records via a Gaussian process. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC, Alley, R, Sigman, DM. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391(6662):65–8.CrossRefGoogle Scholar
Hughen, K, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004a. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303(5655):202–7.CrossRefGoogle ScholarPubMed
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004b. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–86.CrossRefGoogle Scholar
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews 25(23–24):3216–27.CrossRefGoogle Scholar
Libby, WF. 1952. Radiocarbon Dating. Chicago: University of Chicago Press.Google Scholar
Lourantou, A, Lavric, JV, Köhler, P, Barnola, J-M, Paillard, D, Michel, E, Raynaud, D, Chappellaz, D. 2010. Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation. Global Biogeochemical Cycles 24(2): GB2015, doi:10.1029/2009GB003545.CrossRefGoogle Scholar
Martins, JMM, Soares, AMM. 2013. Marine radiocarbon reservoir effect in southern Atlantic Iberian coast. Radiocarbon 55(3):1123–34.CrossRefGoogle Scholar
McGee, D, Broecker, WS, Winckler, G. 2010. Gustiness: the driver of glacial dustiness? Quaternary Science Reviews 29(17–18):2340–50.CrossRefGoogle Scholar
Moreau, C, Caffy, I, Comby, C, Delqué-Količ, E, Dumoulin, J-P, Hain, S, Quiles, A, Setti, V, Souprayen, C, Thellier, B, Vincent, J. 2013. Research and development of the Artemis 14C AMS Facility: status report. Radiocarbon 55(2):331–7.CrossRefGoogle Scholar
Müller, PJ, Suess, E. 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation. Deep-Sea Research 26(12):1347–62.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM, Voelker, A, Bruhn, F, Duhr, A, Oriwall, A. 2001. Carbonate 14C background: Does it have multiple personalities? Radiocarbon 43(2A):169–76.CrossRefGoogle Scholar
Paillard, D, Labeyrie, L, Yiou, P. 1996. Macintosh program performs time-series analysis. Eos Transactions AGU 77(39):379.CrossRefGoogle Scholar
Pichevin, L, Bard, E, Martinez, P, Billy, I. 2007. Evidence of ventilation changes in the Arabian Sea during the Late Quaternary: implication for denitrification and nitrous oxide emission. Global Biogeochemical Cycles 21(4): GB4008, doi:10.1029/2006GB002852.CrossRefGoogle Scholar
Rea, DK. 1994. The paleoclimatic record provided by eolian dust deposition in the deep-sea the geologic history of wind. Reviews of Geophysics 32(2):159–95.CrossRefGoogle Scholar
Reimer, PJ, Reimer, RW. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43(2A):461–3.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, WJ, Bertrand, C, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013a. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, van der Plicht, J. 2013b. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55(4), this issue.CrossRefGoogle Scholar
Ruth, U, Bigler, M, Röthlisberger, R, Siggaard-Andersen, ML, Kipfstuhl, S, Goto-Azuma, K, Hansson, ME, Johnsen, SJ, Lu, H, Steffensen, JP. 2007. Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate. Geophysical Research Letters 34(3): L03706, doi:10.1029/2006GL027876.CrossRefGoogle Scholar
Schleicher, M, Grootes, PM, Nadeau, M-J, Schoon, A. 1998. The carbonate 14C background and its components at the Leibniz AMS facility. Radiocarbon 40(1):8594.CrossRefGoogle Scholar
Schulz, H, von Rad, U, Erlenkeuser, H. 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393(6680):54–7.CrossRefGoogle Scholar
Shackleton, NJ, Fairbanks, RG, Chiu, T-C, Parrenin, F. 2004. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for 14C. Quaternary Science Reviews 23(14–15):1513–22.CrossRefGoogle Scholar
Shakun, JD, Burns, SJ, Fleitmann, D, Kramers, J, Matter, A, Ai-Subary, A. 2007. A high resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth and Planetary Science Letters 259(3–4):442–56.CrossRefGoogle Scholar
Siani, G, Paterne, M, Michel, E, Sulpizio, R, Sbrana, A, Arnold, M, Haddad, G. 2001. Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294(5548):1917–20.CrossRefGoogle ScholarPubMed
Sikes, EL, Samson, CR, Guilderson, TP, Howard, WR. 2000. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405(6786):555–9.CrossRefGoogle ScholarPubMed
Sinha, A, Cannariato, KG, Stott, LD, Li, H-C, You, C-F, Cheng, H, Edwards, RL, Singh, IB. 2005. Variability of southwest Indian summer monsoon precipitation during the B⊘lling-Aller⊘d. Geology 33(10):813–6.CrossRefGoogle Scholar
Southon, JR, Nelson, DE, Vogel, JS. 1990. A record of past ocean-atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5(2):197206.CrossRefGoogle Scholar
Southon, J, Noronha, AL, Cheng, H, Edwards, RL, Wang, Y. 2012. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:3241.CrossRefGoogle Scholar
Staubwasser, M, Sirocko, F, Grootes, PM, Erlenkeuser, H. 2002. South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene. Paleoceanography 17(4):1063, doi:10.1029/2000PA000608.CrossRefGoogle Scholar
Steffensen, JP, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Fischer, H, Goto-Azuma, K, Hansson, M, Johnsen, SJ, Jouzel, J, Masson-Delmotte, V, Popp, T, Rasmussen, SO, Rothlisberger, R, Ruth, U, Stauffer, B, Siggaard-Andersen, ML, Sveinbjörnsdóttir, ÁE, Svensson, A, White, JWC. 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889):680–4.CrossRefGoogle ScholarPubMed
Stuiver, M, Grootes, PM. 2000. GISP2 oxygen isotope ratios. Quaternary Research 53(3):277–84.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215–30.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Svensson, A, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Davies, SM, Johnsen, SJ, Muscheler, R, Parrenin, F, Rasmussen, SO, Rothlisberger, R, Seierstad, I, Steffensen, JP, Vinther, BM. 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4:4757.CrossRefGoogle Scholar
Voelker, AHL, Grootes, PM, Nadeau, M-J, Sarnthein, M. 2000. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the Earth's magnetic field intensity. Radiocarbon 42(3):437–52.CrossRefGoogle Scholar
von Rad, U, Schaaf, M, Michels, KH, Schulz, H, Berger, WH, Sirocko, F. 1999. A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian Sea. Quaternary Research 51(1):3953.CrossRefGoogle Scholar
von Rad, U, Sarnthein, M, Grootes, PM, Doose-Rolinski, H, Erbacher, J. 2003. 14C ages of a varved last glacial maximum section off Pakistan. Radiocarbon 45(3):467–77.CrossRefGoogle Scholar
Waelbroeck, C, Duplessy, J-C, Michel, E, Labeyrie, L, Paillard, D, Duprat, J. 2001. The timing of the last deglaciation in North Atlantic climate records. Nature 412(6848):724–7.CrossRefGoogle ScholarPubMed
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, C-C, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):2345–8.CrossRefGoogle ScholarPubMed
Zhang, R, Delworth, TL. 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate 18(12):1853–60.CrossRefGoogle Scholar