Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:13:35.782Z Has data issue: false hasContentIssue false

Plant Remains and AMS: Dating Climate Change in the Aeolian Islands (Northeastern Sicily) During the 2nd Millennium BC

Published online by Cambridge University Press:  18 July 2016

V Caracuta
Affiliation:
Laboratory of Archaeobotany and Palaeoecology, University of Salento, Lecce, Italy
G Fiorentino*
Affiliation:
Laboratory of Archaeobotany and Palaeoecology, University of Salento, Lecce, Italy
M C Martinelli
Affiliation:
Regional Board of the Archaeological Park of Aeolian Islands, Archaeological Museum L. Bernabò Brea, Lipari, Messina, Italy
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Archaeological plant remains, used to establish a reliable chronology by radiocarbon dating, are used here to investigate trends in past rainfall intensity. The stable carbon isotope ratio in botanic remains depends on environmental conditions during the plant's life. By comparing the δ13C and 14C of selected plant specimens from 3 protohistoric sites in the Aeolian Archipelago, it is possible to identify short-term changes in the rainfall intensity during the 2nd millennium BC. The climate signals inferred from carbon isotope analyses are compared to pollen data for the region and are found to be consistent with changes in vegetal cover. Finally, the climate signals are integrated with the history of the Aeolian communities and the resilience of settlers is evaluated.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alberti, G. 2011. Radiocarbon evidence from the Middle Bronze Age settlement at Portella (Aeolian Islands, Italy): chronological and archaeological implications. Radiocarbon 53(1):112.CrossRefGoogle Scholar
Baldock, JA, Smernik, RJ. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry 33(9):1093–109.CrossRefGoogle Scholar
Bernabò Brea, L, Cavalier, M. 1968. Stazioni preistoriche delle isole Panarea, Salina e Stromboli. Meligunis Lipara. Volume III. Palermo: Flaccovio.Google Scholar
Bernabò Brea, L, Cavalier, M. 1991. Filicudi insediamenti dell'età del Bronzo. Meligunis Lipara. Volume VI. Palermo: Accademia di Scienze, Lettere e Arti.Google Scholar
Bietti Sestieri, AM. 2010. L'Italia nell'età del Bronzo e del Ferro. Roma: Carrocci editore.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Calcagnile, L, Quarta, G, D'Elia, M. 2005. High resolution accelerator-based mass spectrometry: precision, accuracy and background. Applied Radiation and Isotopes 62(4):623–9.Google Scholar
Calderoni, G, Martinelli, MC. 2005. Cronologia radiocarbonio. In: Martinelli, MC. Il villaggio dell'età del Bronzo medio di Portella a Salina nelle Isole Eolie. Florence: Istituto Italiano di Preistoria e Protostoria. p 287–98.Google Scholar
DeNiro, MJ, Hastorf, CA. 1985. Alteration of 15N/14N and 13C/12C ratios of plant matter during the initial stages of diagenesis: studies utilizing archaeological specimens from Perù. Geochimica Cosmochimica Acta 49(1):97115.Google Scholar
D'Elia, M, Calcagnile, L, Quarta, G, Rizzo, A, Sanapo, C, Laudisa, M, Toma, U, Rizzo, A. 2004. Sample preparation and blank values at the AMS radiocarbon facility of the University of Lecce. Nuclear Instruments and Methods in Physics Research B 223–224:278–83.Google Scholar
Ehleringer, JR, Hall, A, Farquar, GD. 1993. Stable Isotopes and Plant Carbon-Water Relations. San Diego: Academic Press.Google Scholar
Farquar, GD, Ehleringer, JR, Hubick, KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40:530–7.Google Scholar
Farquhar, GD, O'Leary, MH, Berry, JA. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9:121–37.Google Scholar
Ferrio, JP, Araus, JL, Buxó, R, Voltas, J, Bort, J. 2005. Water management practices and climate in ancient agriculture: inference from the stable isotope composition of Archaeobotanical remains. Vegetation, History and Archaeobotany 14:510–7. [Data available at http://web.udl.es/usuaris/x3845331/AIRC02_LOESS.xls].Google Scholar
Fiorentino, G, Caracuta, V, Calcagnile, L, D'Elia, M, Matthiae, P, Mavelli, F, Quarta, G. 2008. Third millennium B.C. climate change in Syria highlighted by carbon stable isotope analysis of 14C-AMS dated plant remains from Ebla. Palaeogeography, Palaeoclimatology, Palaeoecology 266(1–2):51–8.CrossRefGoogle Scholar
Fiorentino, G, Caracuta, V, Volpe, G, Turchiano, M, Quarta, G, D'Elia, M, Calcagnile, L. 2009. The first millennium AD climate fluctuations in the Tavoliere Plain (Apulia, Italy): new data from the 14C AMS-dated plant remains from the archaeological site of Faragola. Nuclear Instruments and Methods in Physics Research B 268(7–8):1084–7.Google Scholar
Fiorentino, G, Caracuta, V, Quarta, G, Calcagnile, L, Morandi-Bonaccossi, D. 2012a. Palaeoprecipitation trends and cultural changes in Syrian proto-historic communities: the contribution of δ13C. In: Kneisel, J, Kirleis, W, Dal Corso, M, Taylor, N, Tiedtke, V, editors. Collapse or Continuity? Environment and Development of Bronze Age Human Landscapes. Bonn: Verlag Dr Rudolph Habelt GmbH. p 1734.Google Scholar
Fiorentino, G, Caracuta, G, Casiello, G, Longobardi, F, Sacco, A. 2012b. Studying ancient crop provenance: implication from δ13C and δ15N of charred barley in a Middle Bronze Age silo at Ebla (NW Syria). Rapid Communications in Mass Spectrometry 26(3):327–35.Google Scholar
Guo, G, Xie, G. 2006. The relationship between plant stable carbon isotope composition, precipitation and satellite data, Tibet Plateau, China. Quaternary International 144(1):6871.Google Scholar
Hall, G, Woodborne, S, Scholes, M. 2008. Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology 247(3):384400.CrossRefGoogle Scholar
Heaton, THE. 1999. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. Journal of Archaeological Science 26(6):637–49.Google Scholar
Heaton, THE, Jones, G, Halstead, P, Tsipropoulos, T. 2009. Variations in the 13C/12C ratios of modern wheat grain, and implications for interpreting data from Bronze Age Assiros Toumba, Greece. Journal of Archaeological Science 36(10):2224–33.CrossRefGoogle Scholar
Maramai, A, Graziani, L, Tinti, S. 2005. Tsunamis in the Aeolian Islands (southern Italy): a review. Marine Geology 215(1–2):1121.Google Scholar
Martinelli, MC. 2005. Il Villaggio dell'età del Bronzo medio di Portella a Salina nelle Isole Eolie. Florence: Istituto Italiano di Preistoria e Protostoria.Google Scholar
Martinelli, MC. 2010. Archeologia delle Isole Eolie. Il Villaggio dell'età del Bronzo medio di Portella a Salina. Ricerche 2006 e 2008. Muggiò (Mi): Rebus editore.Google Scholar
Martinelli, MC, Fiorentino, G. 2008. The “fires” of Aeolian villages at the end of Middle Bronze Age: the case of Portella site in the Salina island. In: Fiorentino, G, Magri, D. Charcoal from the Past. Proceedings of the 3rd IMA. British Archaeological Reports 1807. Oxford: Archaeopress. p 177–90.Google Scholar
Martinelli, MC, Fiorentino, G, Prosdocimi, B, D'Oronzo, C, Levi, ST, Mangano, G, Stellati, A, Wolff, N. 2010. Nuove ricerche nell'insediamento sull'istmo di Filo Braccio a Filicudi. Nota preliminare sugli scavi 2009. Origini 32:285314.Google Scholar
Mayewski, PA, Rohling, EE, Stager, JC, Karlén, W, Maasch, KA, Meeker, LD, Meyerson, EA, Gasse, F, van Kreveld, S, Holmgren, K, Lee-Thorp, J, Rosqvist, G, Rack, F, Staubwasser, M, Schneider, R, Steig, EJ. 2004. Holocene climate variability. Quaternary Research 62(3):243–55.CrossRefGoogle Scholar
McCarroll, D, Loader, NJ. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23:771801.CrossRefGoogle Scholar
Morelli, C, Giese, P, Cassinis, R, Colombi, B, Guerra, I, Luongo, G, Scarascia, S, Schutte, KG. 1975. Crustal structure of southern Italy. A seismic refraction profile between Puglia–Calabria–Sicily. Bollettino Geofisico Teorico Applicato 12:275309.Google Scholar
O'Leary, MH. 1995. Environmental effects on carbon fractionation in terrestrial plants. In: Wada, E, Yoneyama, T, Minagawa, M, Ando, T, Fry, BD, editors. Stable Isotopes in the Biosphere. Kyoto: Kyoto University Press, p 7891.Google Scholar
Patton, M. 1996. Islands in Time. Island Sociogeography and Mediterranean Prehistory. New York: Routledge.Google Scholar
Quarta, G, D'Elia, M, Valzano, D, Calcagnile, L. 2005. New bomb pulse radiocarbon records from annual tree rings in the Northern Hemisphere temperate region. Radiocarbon 47(1):2730.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Riehl, S, Bryson, RA and Pustovoytov, KE. 2008. Changing growing conditions for crops during the Near Eastern Bronze Age (3000–1200 BC): the stable carbon isotope evidence. Journal of Archaeological Science 35(4):1011–2.Google Scholar
Roberts, CN, Eastwood, W, Kuzucuolu, C, Fiorentino, G, Caracuta, V. 2011. Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. The Holocene 21(1):147–62.Google Scholar
Sadori, L, Zanchetta, G, Giardini, M. 2008. Last Glacial to Holocene palaeoenvironmental evolution at Lago di Pergusa (Sicily, southern Italy) as inferred by pollen, microcharcoal, and stable isotopes. Quaternary International 181(1):414.CrossRefGoogle Scholar
Schleser, GH, Helle, G, Lücke, A, Vos, H. 1999. Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quaternary Science Reviews 18:927–43.CrossRefGoogle Scholar
Schmitt, J, Schneider, R, Elsig, J, Leuenberger, D, Lourantou, A, Chappellaz, J, Köhler, P, Joos, F, Stocker, TF, Leuenberger, M, Fischer, H. 2012. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336(608):711–4.CrossRefGoogle ScholarPubMed
Stewart, GR, Turnbull, MH, Schmidt, S, Erskine, PD. 1995. 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Australian Journal of Plant Physiology 22(1):51–5.Google Scholar
Taylor, JA, Orr, JC. 2000. The natural latitudinal distribution of atmospheric CO2 . Global and Planetary Change 26(4):375–86.Google Scholar
Théry-Parisot, I, Chabal, L, Chrzavzez, J. 2010. Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology 291(1–2):142–53.CrossRefGoogle Scholar
Tinner, W, van Leeuwen, JFN, Colombaroli, D, Vescovi, E, van der Knaap, WO, Henne, PD, Pasta, S, D'Angelo, S, La Mantia, T. 2009. Holocene environmental changes at Gorgo Basso, a Mediterranean coastal lake in southern Sicily, Italy. Quaternary Science Reviews 28:1498–510.Google Scholar
Troia, A. 1998. Contributo alla conoscenza delle Isole Eolie (Sicilia). Informatore Botanico Italiano 29(2–3):262–6.Google Scholar
Vernet, JL, Pachiaudi, C, Bazile, F, Durand, A, Fabre, L, Heinz, C, Solari, ME, Thiebault, S. 1996. Le δ13C de charbons de bois préhistoriques et historiques méditerranées, de 35000 BP a l'actuel. Premiers résultats. Comptes Rendus de l'Académie des Sciences Paris 323(2a):319–24.Google Scholar
Weiguo, L, Xiahong, F, Youfeng, N, Qingle, Z, Yunning, C. 2005. δ13C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China. Global Change Biology 11(7):1094–100.CrossRefGoogle Scholar
Williamson, I, Sabath, MD. 1984. Small population instability and Island settlement patterns. Human Ecology 12(1):2133.CrossRefGoogle ScholarPubMed
Zohary, D, Hopf, M. 2000. Domestication of Plants in the Old World. 3rd edition. New York: Oxford University Press.Google Scholar