Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T11:08:20.250Z Has data issue: false hasContentIssue false

Optical Detection of Radiocarbon Dioxide: First Results and AMS Intercomparison

Published online by Cambridge University Press:  09 February 2016

I Galli
Affiliation:
Istituto Nazionale di Ottica (INO) – CNR, European Laboratory for Non-linear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy
S Bartalini
Affiliation:
Istituto Nazionale di Ottica (INO) – CNR, European Laboratory for Non-linear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy
P Cancio
Affiliation:
Istituto Nazionale di Ottica (INO) – CNR, European Laboratory for Non-linear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy
P De Natale
Affiliation:
Istituto Nazionale di Ottica (INO) – CNR, European Laboratory for Non-linear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy
D Mazzotti*
Affiliation:
Istituto Nazionale di Ottica (INO) – CNR, European Laboratory for Non-linear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy
G Giusfredi
Affiliation:
Istituto Nazionale di Ottica (INO) – CNR, European Laboratory for Non-linear Spectroscopy (LENS), Via Carrara 1, 50019 Sesto Fiorentino FI, Italy
M E Fedi
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN) – Sez. Firenze, Dipartimento di Fisica e Astronomia, Via Sansone 1, 50019 Sesto Fiorentino FI, Italy
P A Mandò
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN) – Sez. Firenze, Dipartimento di Fisica e Astronomia, Via Sansone 1, 50019 Sesto Fiorentino FI, Italy
*
2Corresponding author: [email protected].

Abstract

The first results of an optical method for measuring radiocarbon concentrations, based on mid-infrared laser spectroscopy of a carbon dioxide gas sample, are presented with the theoretical bases explained in detail. The first measurements on modern and highly enriched samples show the extreme linearity of this technique over more than 5 decades. An intercomparison with accelerator mass spectrometry (AMS) is performed both for modern and 14C-dead samples, assessing the almost perfect agreement of their respectively measured concentration values. The main features of our technique are compared with liquid scintillation counting (LSC) and AMS, and future developments of the current setup are discussed.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartalini, S, Borri, S, Cancio, P, Castrillo, A, Galli, I, Giusfredi, G, Mazzotti, D, Gianfrani, L, De Natale, P. 2010. Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit. Physical Review Letters 104:083904.CrossRefGoogle ScholarPubMed
Bartalini, S, Borri, S, Galli, I, Giusfredi, G, Mazzotti, D, Edamura, T, Akikusa, N, Yamanishi, M, De Natale, P. 2011. Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Optics Express 19(19):17,99618,003.Google Scholar
Bennett, CL, Beukens, RP, Clover, MR, Gove, HE, Liebert, RB, Litherland, AE, Purser, KH, Sondheim, WE. 1977. Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198(4316):508–10.Google Scholar
Cappelli, F, Galli, I, Borri, S, Giusfredi, G, Cancio, P, Mazzotti, D, Montori, A, Akikusa, N, Yamanishi, M, Bartalini, S, De Natale, P. 2012. Subkilohertz linewidth room-temperature mid-IR quantum cascade laser using a molecular sub-Doppler reference. Optics Letters 37(23):4811–3.CrossRefGoogle ScholarPubMed
Faist, J, Capasso, F, Sivco, DL, Sirtori, C, Hutchinson, AL, Cho, AY. 1994. Quantum cascade laser. Science 264(5158):553–6.CrossRefGoogle ScholarPubMed
Faist, J, Gmachl, C, Capasso, F, Sirtori, C, Sivco, DL, Baillargeon, JN, Cho, AY. 1997. Distributed feedback quantum cascade lasers. Applied Physics Letters 70(20):2670.CrossRefGoogle Scholar
Fedi, ME, Cartocci, A, Manetti, M, Taccetti, F, Mandò, PA. 2007. The 14C AMS facility at LABEC, Florence. Nuclear Instruments and Methods in Physics Research B 259(1):18–22.Google Scholar
Fedi, ME, Bernardoni, V, Caforio, L, Calzolai, G, Carraresi, L, Manetti, M, Taccetti, F, Mandò, PA. 2013. Status of sample combustion and graphitization lines at INFN-LABEC. Radiocarbon, these proceedings.CrossRefGoogle Scholar
Galli, I, Bartalini, S, Borri, S, Cancio, P, Giusfredi, G, Mazzotti, D, De Natale, P. 2010. Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm. Optics Letters 35(21):3616–8.CrossRefGoogle ScholarPubMed
Galli, I, Bartalini, S, Borri, S, Cancio, P, Mazzotti, D, De Natale, P, Giusfredi, G. 2011. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Physical Review Letters 107:270802.Google Scholar
Giusfredi, G, Bartalini, S, Borri, S, Cancio, P, Galli, I, Mazzotti, D, De Natale, P. 2010. Saturated-absorption cavity ring-down spectroscopy. Physical Review Letters 104:110801.CrossRefGoogle ScholarPubMed
Kutschera, W. 2005. Progress in isotope analysis at ultratrace level by AMS. International Journal of Mass Spectrometry 242(2–3):145–60.CrossRefGoogle Scholar
Labrie, D, Reid, J. 1981. Radiocarbon dating by infrared laser spectroscopy. A feasibility study. Applied Physics 24(4):381–6.Google Scholar
Murnick, DE, Peer, BJ. 1994. Laser-based analysis of carbon isotope ratios. Science 263(5149):945–7.Google Scholar
Murnick, DE, Dogru, O, Ilkmen, E. 2008. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity. Analytical Chemistry 80(13):4820–4.Google Scholar
Murnick, DE, Dogru, O, Ilkmen, E. 2010. 14C analysis via intracavity optogalvanic spectroscopy. Nuclear Instruments and Methods in Physics Research B 268(7–8):708–11.Google Scholar
Romanini, D, Kachanov, AA, Sadeghi, N, Stoeckel, F. 1997. CW cavity ring down spectroscopy. Chemical Physics Letters 264(3–4):316–22.Google Scholar
Rothman, LS, Gordon, IE, Barbe, A, Benner, DC, Bernath, PF, Birk, M, Boudon, V, Brown, LR, Campargue, A, Champion, J-P, Chance, K, Coudert, LH, Dana, V, Devi, VM, Fally, S, Flaud, J-M, Gamache, RR, Goldman, A, Jacquemart, D, Kleiner, I, Lacome, N, Lafferty, WJ, Mandin, J-Y, Massie, ST, Mikhailenko, SN, Miller, CE, Moazzen-Ahmadi, N, Naumenko, OV, Nikitin, AV, Orphal, J, Perevalov, VI, Perrin, A, Predoi-Cross, A, Rinsland, CP, Rotger, M, Šimečková, M, Smith, MAH, et al. 2009. The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 110(9–10):533–72.Google Scholar
Schulze-König, T, Dueker, SR, Giacomo, J, Suter, M, Vogel, JS, Synal, H-A. 2010. BioMICADAS: compact next generation AMS system for pharmaceutical science. Nuclear Instruments and Methods in Physics Research B 268(7–8):891–4.Google Scholar
Synal, H-A, Wacker, L. 2010. AMS measurement technique after 30 years: possibilities and limitations of low energy systems. Nuclear Instruments and Methods in Physics Research B 268(7–8):701–7.Google Scholar