Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T15:36:51.714Z Has data issue: false hasContentIssue false

New Radiocarbon Data from the Paleosols of the NYíRSéG blown Sand Area, Hungary

Published online by Cambridge University Press:  26 November 2019

Botond Buró*
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026, Bem tér 18/c. Debrecen, Hungary
József Lóki
Affiliation:
Department of Physical Geography and Geoinformatics, University of Debrecen, Debrecen, Hungary
Erika Győri
Affiliation:
Department of Physical Geography and Geoinformatics, University of Debrecen, Debrecen, Hungary
Richárd Nagy
Affiliation:
Department of Physical Geography and Geoinformatics, University of Debrecen, Debrecen, Hungary
Mihály Molnár
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026, Bem tér 18/c. Debrecen, Hungary
Gábor Négyesi
Affiliation:
Department of Physical Geography and Geoinformatics, University of Debrecen, Debrecen, Hungary
*
*Corresponding author. Email: [email protected].

Abstract

Despite many ideas about the age and processes of sand movements and paleosol formation, there are still some uncertainties in this relations in the Nyírség, eastern Hungary. The major aim of the present study was to clarify the chronology of fossil soils and blown-sand layers in the sand dunes of the Nyírség using radiocarbon (14C) dating on soil and charcoal samples. Charcoal and soil samples were collected from buried paleosols from different sand quarries for 14C dating. The bulk organic carbon content of the buried soil and charcoal pieces recovered from buried fossil soil layers allowed parallel 14C accelerator mass spectrometry dating in several cases. The new 14C results indicate paleosol development during Younger Dryas, while the preceding interstadial was assumed as a cold and dry period when only sand movement occurred in the area. Our results also confirm and support the previous assumptions, that in the Late Glacial, the first paleosol development period was during the Bølling-Allerød Interstadial. Four soil-forming periods could be determined during the Holocene (Preboreal, Boreal, Atlantic, Subatlantic). We have also indirectly identified sand movements during the Oldest Dryas, Younger Dryas, Preboreal, Boreal, and Subatlantic phase in the study area.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Borhidi, A, Sánta, A. 1999. Plant associations of Hungary. Természetbúvár. In Hungarian.Google Scholar
Borsy, Z. 1961. Physical geography of Nyírség. Budapest: Academical Press. 227 p. In Hungarian.Google Scholar
Borsy, Z. 1980. Results of geomorphological research of the Nyírség—in a practical view. Acta Academiae Paedagogicae Nyíregyháziensis 8:1936. In Hungarian.Google Scholar
Borsy, Z. 1987. Geomorphic evolution of alluvial fans on the Hungarian Great Plain. Studies from the College of Nyíregyháza. p. 537. In Hungarian.Google Scholar
Borsy, Z. 1991. Blown sand territories in Hungary. Zeitschrift für Geomorphologie Supplementum 90:114.Google Scholar
Borsy, Z, Csongor, É, Félegyházi, E, Lóki, J, Szabó, I. 1981. Periods of sand movement in the aspect of radiocarbon investigations. Szabolcs-Szatmári Szemle 16:4550. In Hungarian.Google Scholar
Buró, B. 2016. Studying recent and sub-recent land forming processes in model areas in the Nyírség. PhD thesis. 150 p.Google Scholar
Buró, B, Jakab, A, Lóki, J. 2012. Geomorphological and stratigraphic analyses at the archaeological excavation in the Megapark, Nyíregyháza-Oros. Journal of Environmental Geography IV (1–4):2328.Google Scholar
Buró, B, Sipos, Gy, Lóki, J, Andrási, B, Félegyházi, E, Négyesi, G. 2016. Assessing Late Pleistocene and Holocene phases of aeolian activity on the Nyírseg alluvial fan, Hungary. Quaternary International 425:83195.CrossRefGoogle Scholar
Cholnoky, J. 1910. Geomorphic surface of the Hungarian Great Plain. Geographical Review 38:413436. In Hungarian.Google Scholar
Csongor, É, Borsy, Z, Szabó, I. 1980. Age of charcoal samples of geomorphological interest in northeast Hungary. Radiocarbon 22(3):774777.10.1017/S0033822200010146CrossRefGoogle Scholar
Félegyházi, E, Lóki, J. 2006. Investigation of sand sheet at the edge of Nyírség. Landscape, Environment and Society:191203. In Hungarian.Google Scholar
Feurdean, A, Perşoiu, A, Tanţău, I, Stevens, T, Magyari, EK, Onac, BP, Marković, S, Andrič, M, Connor, S, Fărcaş, S. 2014. Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quaternary Science Reviews 106:206224.10.1016/j.quascirev.2014.06.003CrossRefGoogle Scholar
Frisnyák, S. 2002. Historical geography of Nyírseg and Upper-Tisza region. Geographic Department of the College of Nyíregyhaza. 270 p.Google Scholar
Gábris, Gy. 2003. Subdivisions and blown-sand movement stages of the last 30,000 years in Hungary. Geographical Review 51:114. In Hungarian.Google Scholar
Goble, RJ, Mason, JA, Loope, DB, Swinehart, JB. 2004. Optical and radiocarbon ages of stacked paleosols and dune sands in the Nebraska Sand Hills, USA. Quaternary Science Reviews 23:11731182.10.1016/j.quascirev.2003.09.009CrossRefGoogle Scholar
Járainé-Komlódi, M. 2000. Vegetational history of the Carpathian Basin. Tilia 9:560. In Hungarian.Google Scholar
Jull, AJT, Burr, GS, Beck, JW, Hodgins, GWL, Biddulph, DL, Gann, J, Hatheway, AL, Lange, TE, Lifton, NA. 2006. Application of accelerator mass spectrometry to environmental and paleoclimate studies at the University of Arizona. Radioactivity in the Environment 8:323.10.1016/S1569-4860(05)08001-0CrossRefGoogle Scholar
Kiss, T, Nyári, D, Sipos, Gy. 2008. Examination of the aeolian activity in the historical time: comparative analyses of Nyírség and Tisza-Danube interfluve. Geographia generalis et specialis. Debrecen. p. 99106. In Hungarian.Google Scholar
Kiss, T, Sipos, Gy, Mauz, B, Mezősi, G. 2012. Holocene aeolian sand mobilization, vegetation history and human impact on the stabilized sand dune area of the southern Nyírség, Hungary. Quaternary Research 78:492501.CrossRefGoogle Scholar
Kiss, T, Sipos, Gy. 2006. Sand movements in the South-Nyírség starting by anthropogenic effects—on the basis of sedimentological analyses of a closed interdune site. Geographical studies for the dedication to Dr. Lóki József. p. 115125. In Hungarian.Google Scholar
Kottek, M, Grieser, J, Beck, C, Rudolf, B, Rubel, F. 2006. World map of Köppen-Geiger climate classification updated. Meteorol. Z. 15:259263.10.1127/0941-2948/2006/0130CrossRefGoogle Scholar
Lóki, J. 2003. Mechanism of wind erosion and its effect on Hungary [doctoral thesis]. 265 p. In Hungarian.Google Scholar
Lóki, J. 2006. Holocene land transformation in Hungarian wind-blown sand areas. Proceedings of the Third Hungarian Geographical Conference. CD-issue, ISBN 963-9545-12-0. In Hungarian.Google Scholar
Lóki, J, Hertelendi, E, Borsy, Z. 1994. New dating of blown sand movement in the Nyírség. Acta Geographica Ac Geologica et Meteorologica Debrecina 32:6776. In Hungarian.Google Scholar
Lóki, J, Négyesi, G, Tóth, Cs, Plásztán, J. 2012. The investigation and qualification of the deflation sensitivity in the Nyírség. University of Debrecen. p. 162.Google Scholar
Lóki, J, Schweitzer, F. 2001. Dating questions of young sand movements—in the aspect of archeological excavations. Acta Geographica Ac Geologica et Meteorologica Debrecina 35:175183. In Hungarian.Google Scholar
Magyari, E, Kunes, P, Jakab, G, Sümegi, P, Pelánková, B, Schabitz, F, Braun, M, Chytry, M. 2014. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia? Quaternary Science Reviews 95:6079.10.1016/j.quascirev.2014.04.020CrossRefGoogle Scholar
Marosi, S. 1967. Notifications to the genetics and morphology of Hungarian wind blown-sand areas. Geographical Reviews 15:231255. In Hungarian.Google Scholar
Miao, X, Wang, H, Hanson, PR, Mason, JA, Liu, X. 2016. A new method to constrain soil development time using both OSL and radiocarbon dating. Geoderma 261:93100.10.1016/j.geoderma.2015.07.004CrossRefGoogle Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, S M, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013a. Status report of the new AMS 14C sample preparation lab of the Hertelendy Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55:665676.10.1017/S0033822200057829CrossRefGoogle Scholar
Molnár, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, HA. 2013b. ENVIRONMICADAS: A mini 14C AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55: 338344.10.1017/S0033822200057453CrossRefGoogle Scholar
Nagy, J. 1908. The relief of the Nyírség. Kolozsvár: Bonaventura Press. 20 p.Google Scholar
Novák, T, Négyesi, G, Andrási, B, Buró, B. 2014. Alluvial plain with wind-blown sand dunes in South Nyírség, Eastern Hungary. Soil sequences atlas: 181197.Google Scholar
Novothny, Á, Frechen, M, Horváth, E. 2010. Luminescence dating of periods of sand movement from the Gödöllő Hills, Hungary. Geomorphology 122:254263.CrossRefGoogle Scholar
Nyári, D, Kiss, T, Sipos, Gy, Knipl, I, Wicker, E. 2006b. Anthropogenic landforming processes: sand movements in historical ages surrounding of Apostag. The changes of landscape in Carpathian-basin. Settlement in landscape. p. 170–175. In Hungarian.Google Scholar
Nyári, D, Kiss, T, Sipos, Gy. 2006a. Dating of sand movements in historical ages by luminescence method in Danube-Tisza Interfluve. Proceedings of the Third Hungarian Geographical Conference. CD-issue, ISBN 963-9545-12-0. In Hungarian.Google Scholar
Nyári, D, Kiss, T, Sipos, Gy. 2007a. Investigation of Holocene blown-sand movement based on archaeological findings and OSL dating, Danube-Tisza Interfluve, Hungary. Journal of Maps Student Edition. p. 4557.CrossRefGoogle Scholar
Nyári, D, Kiss, T. 2005. Blown sand movement in Bács-Kiskun county—from archeological aspect. Cumania. p. 8394.Google Scholar
Nyári, D, Rosta, Sz, Kiss, T. 2007b. Multidisciplinary analysis of an archaeological site based on archaeological, geomorphological investigations and optically stimulated luminescens (OSL) dating at Kiskunhalas on the Danube-Tisza Interfluve, Hungary. Abstracts book. European Association of Archeologists. p. 142143.Google Scholar
Raghavan, H, Rajaguru, SN, Misra, VN. 1989. Radiometric dating of a quaternary dune section, Didwana, Rajasthan. Man and Environment XIII:1822.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
Rinyu, L, Orsovszki, G, Futó, I, Veres, M, Molnar, M. 2015. Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS. Nuclear Instruments and Methods in Physics Research B 361:406413.10.1016/j.nimb.2015.03.083CrossRefGoogle Scholar
Sipos, Gy, Kiss, T, Nyári, D. 2006. OSL measurement possibilities. Investigation of sand movement near Csengele. Environmental Science Symposium Abstracts. p. 4345. In Hungarian.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35:215230.CrossRefGoogle Scholar
Sümeghy, J. 1944. Tiszántúl. Geological Description of Hungarian Landscapes 6:208. In Hungarian.Google Scholar
Sümegi, P, Lóki, J, Hertelendi, E, Szöőr, Gy. 1992. A tiszaalpári magaspart rétegsorának szedimentológiai és sztratigráfiai elemzése. Alföldi Tanulmányok:7588.Google Scholar
Sümegi, P, Magyari, E, Dániel, P, Molnár, M, Törőcsik, T. 2013. Responses of terrestrial ecosystems to Dansgaard–Oeshger cycles and Heinrich-events: A 28,000-year record of environmental changes from SE Hungary. Quaternary International 293:3450.10.1016/j.quaint.2012.07.032CrossRefGoogle Scholar
Sümegi, P, Lóki, J. 1990. A lakiteleki téglagyári feltárás rétegtani elemzése. Acta Geographica Debrecina 1987–1988 XXVI–XXVII:157167.Google Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259:713.10.1016/j.nimb.2007.01.138CrossRefGoogle Scholar
Thamó-Bozsó, E, Magyari, Á, Nagy, A, Unger, Z, Kercsmár, Zs. 2007. OSL dates and heavy mineral analysis of upper Quaternary sediments from the valleys of Ér and Berettyó Rivers. Geochronometria 28:1723.10.2478/v10003-007-0026-xCrossRefGoogle Scholar
Újházy, K, Gábris, Gy, Frechen, M. 2003. Ages of periods of sand movement in Hungary determined through luminescence measurements. Quaternary International 111:91100.CrossRefGoogle Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Némec, M, Ruff, M, Suter, M, Synal, HA, Vockenhuber, C. 2010. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52:252262.CrossRefGoogle Scholar