Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T19:30:12.577Z Has data issue: false hasContentIssue false

Mass Spectrometric 14C and U-Th Measurements in Coral

Published online by Cambridge University Press:  18 July 2016

G. S. Burr
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, University of Arizona, Tucson, Arizona 85721 USA
R. L. Edwards
Affiliation:
Minnesota Isotope Laboratory, Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455 USA
D. J. Donahue
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, University of Arizona, Tucson, Arizona 85721 USA
E. R. M. Druffel
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
F. W. Taylor
Affiliation:
Institute for Geophysics, The University of Texas at Austin, Austin, Texas 78759 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss U-Th and 14C measurements in coral. Samples with U-Th dates in excess of 50 ka BP were chosen for study. Some bulk samples from this group have measurable 14C dates, which range from 30 ka to 43 ka bp. These can be explained by 0.5–2.5% contamination by modern carbon. This small amount of contamination can produce significant offsets in 14C dates of coral samples older than ≃10 ka. It may be undetectable in X-ray powder diffraction patterns. We describe a sample pretreatment that removes the modern carbon by selective dissolution and produces accurate 14C dates.

Type
II. Applied Isotope Geochemistry
Copyright
Copyright © The American Journal of Science 

References

Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990a Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405410.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Fairbanks, R. G., Zindler, A., Mathieu, G. and Arnold, M. 1990b U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 years bp. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 461468.Google Scholar
Bard, E., Hamelin, B., Arnold, M. and Buigues, D. 1991 230Th/234U and 14C ages obtained by mass spectrometry on corals from Mururoa Atoll, French Polynesia. Abstract. Radiocarbon 33(2): 173.Google Scholar
Becker, B. and Kromer, B. 1986 Extension of the Holocene dendrochronology by the preboreal pine series, 8800 to 10,100 bp. In Stuiver, M., and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 961968.Google Scholar
Becker, B., Kromer, B. and Trimborn, P. 1991 A stable-isotope tree-ring timescale of the late glacial/Holocene boundary. Nature 353: 647649.CrossRefGoogle Scholar
Bender, M. L., Fairbanks, R. G., Taylor, F. W., Matthews, R. K., Goddard, J. G. and Broecker, W. S. 1979 Uranium-series dating of the Pleistocene reef tracts of Barbados, West Indies. Geological Society of America Bulletin Part I. 90: 577594.Google Scholar
Bloom, A. L., Broecker, W. S., Chappell, M. A., Matthews, R. K. and Mesolella, K. J. 1974 Quaternary sea level fluctuations on a tectonic coast: New 230Th/234U dates from the Huon Peninsula, New Guinea. Quaternary Research 4: 185205.Google Scholar
Chappell, J. M. A. 1974 Geology of coral terraces, Huon Peninsula, New Guinea: A study of Quaternary tectonic movements and sea level changes. Geological Society of America Bulletin 85: 553570.Google Scholar
Chappell, J. M. A. and Polach, H. A. 1972 Some effects of partial recrystallisation on 14C dating Late Pleistocene corals and molluscs. Quaternary Research 2: 244252.CrossRefGoogle Scholar
Chave, K. E., Deffeyes, K. S., Weyl, P. K., Garrels, R. M. and Thompson, M. E. 1962 Observations on the solubility of skeletal carbonates in aqueous solutions. Science 137: 3334.CrossRefGoogle ScholarPubMed
Chen, J. H., Edwards, R. L. and Wasserburg, G. J. 1986 238U, 234U and 230Th in seawater. Earth and Planetary Science Letters 80: 241251.CrossRefGoogle Scholar
Donahue, D. J., Linick, T. W. and Jull, A. J. T. 1990 Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2):135142.Google Scholar
Donahue, D. J., Jull, A. J. T. and Toolin, L. J. 1990 Radiocarbon measurements at the University of Arizona AMS facility. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 224228.Google Scholar
Edwards, R. L., Chen, J. H., Ku, T.-L. and Wasserburg, G. J. 1987 Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals. Science 236: 15471553.CrossRefGoogle ScholarPubMed
Edwards, R.L., Chen, J. H. and Wasserburg, G. J. 1987 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81: 175192.CrossRefGoogle Scholar
Edwards, R. L., Taylor, F. W. and Wasserburg, G. J. 1988 Dating earthquakes with high precision Th-230 ages of very young corals. Earth and Planetary Science Letters 90: 371381.CrossRefGoogle Scholar
Jamieson, J. C. 1953 Phase equilibrium in the system calcite-aragonite. Journal of Chemical Physics 21(8): 13851390.CrossRefGoogle Scholar
Kaufman, A. and Broecker, W. 1965 Comparison of Th230 and C14 ages for carbonate materials from Lakes Lahontan and Bonneville. Journal of Geophysical Research 70(16): 40394054.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. R. 1974 X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York, John Wiley & Sons: 966 p.Google Scholar
Linick, T. W., Jull, A. J. T., Toolin, L. J. and Donahue, D. J. 1986 Operation of the NSF-Arizona Accelerator Facility for Radioisotope Analysis and results from selected collaborative research projects. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 522533.Google Scholar
Matthews, R. K. 1968 Carbonate diagenesis: Equilibration of sedimentary mineralogy to the subaerial environment; coral cap of Barbados, West Indies. Journal of Sedimentary Petrology 38(4): 11101119.CrossRefGoogle Scholar
Slota, P. J. Jr., Jull, A. J. T., Linick, T. W. and Toolin, L. J. 1987 Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2): 303306.CrossRefGoogle Scholar
Stuiver, M. 1970 Long-term 14C variations. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology. New York, John Wiley & Sons: 197213.Google Scholar
Stuiver, M. 1971 Evidence for the variation of atmospheric 14C content in the Late Quaternary. In Turekian, K. K., ed., The Late Cenozoic Glacial Ages. New Haven, Connecticut, Yale University Press: 5770.Google Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Kromer, B. 1991 Climatic, solar, oceanic, and geomagnetic influences on late-glacial and holocene atmospheric 14C/13C change. Quaternary Research 35: 124.CrossRefGoogle Scholar
Zbinden, H., Andrée, M., Oeschger, H., Ammann, B., Lotter, A., Bonnani, G. and Wölfli, W. 1989 Atmospheric radiocarbon at the end of the last glacial: An estimate based on AMS radiocarbon dates on terrestrial macrofossils from lake sediments. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 795804.Google Scholar