Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T08:26:42.409Z Has data issue: false hasContentIssue false

LIST OF 14C DATES OBTAINED UNDER THE PROJECT “THE DOBUŻEK SCARP MICROREGION AS A PART OF A PHYSIOLOGICAL AND BIOCULTURAL FRONTIER BETWEEN THE BALTIC AND THE PONTIC ZONE (FROM THE 6TH TO THE 2ND MILLENNIUM BC)”

Published online by Cambridge University Press:  23 September 2021

Tomasz J Chmielewski*
Affiliation:
Independent Scholar, Wrocław, Poland
Tomasz Goslar
Affiliation:
Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
Agata Hałuszko
Affiliation:
Archeolodzy.org Foundation, Wrocław, Poland
Agata Sady-Bugajska
Affiliation:
Department of Archaeology, Silesian Museum, Katowice, Poland
Jan Wiejacki
Affiliation:
Institute of Archaeology, Nicolaus Copernicus University in Toruń, Toruń, Poland
*
*Corresponding author. Email: [email protected]

Abstract

This paper presents results of accelerator mass spectrometry radiocarbon (AMS 14C) dating of prehistoric samples (human and animal bones, cremated human bones, charcoals, and other charred plant macroremains) from archaeological sites located in the area of Dobużek Scarp, on the Sokal Ridge in central-eastern Poland (E Poland). The date list reports 46 14C age measurements performed within the project “The Dobużek Scarp Microregion as a part of a physiological and biocultural frontier between the Baltic and the Pontic zone (from the 6th to the 2nd millennium BC)” conducted in 2016–2021. The resulting 14C dates fall into quite a long interval, which in terms of the regional archaeological periodization lasts from the Middle Eneolithic to the Early Iron Age, and in terms of the climatological one corresponds with the Subboreal.

Type
Date List
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayliss, A. 2015. Quality in Bayesian chronological models in archaeology. World Archaeology 47(4):677700. doi: 10.1080/00438243.2015.1067640.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112. doi: 10.1017/S0033822200045069.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360. doi: 10.1017/S0033822200033865.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, REM. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163. doi: 10.1017/S0033822200039473.CrossRefGoogle Scholar
Chmielewski, TJ., Hałuszko, A, Goslar, T, Cheronet, O, Hajdu, T, Szeniczey, T, Virag, C. 2021a. Increase in 14C dating accuracy of prehistoric skeletal remains by optimised bone sampling: Chronometric studies on the Eneolithic burials from Mikulin 9 (Poland) and Urziceni-Vada ret (Romania). Geochronometria 47:196208. doi: 10.2478/geochr-2020-0026.CrossRefGoogle Scholar
Chmielewski, TJ, Hałuszko, A, Mackiewicz, M, Pieńkos, I, Sady-Bugajska, A, Starkova, E, Ślusarska, K. Forthcoming 2021b. Einmal ist keinmal. Peculiar burial practices of prehistoric communities settling the Lublin-Volhynia Upland in the Early Iron Age. Praehistorische Zeitschrift. doi: 10.1515/pz-2021-2042.CrossRefGoogle Scholar
Goslar, T, Czernik, J, Goslar, E. 2004. Low-energy 14C AMS in Poznań Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223(4):511.CrossRefGoogle Scholar
Lanting, JN, van der Plicht, J. 2001. Dating of cremated bones. Radiocarbon 43(2A):249254.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.CrossRefGoogle ScholarPubMed
Millard, AR. 2014. Conventions for reporting radiocarbon determinations. Radiocarbon 56(2): 555559.CrossRefGoogle Scholar
Pustovoytov, K, Riehl, S. 2006. Suitability of biogenic carbonate of Lithospermum fruits for 14C dating. Quaternary Research 65(3):508518. doi: 10.1016/j.yqres.2006.02.011.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, P, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Sciences 26:687695.CrossRefGoogle Scholar
Supplementary material: File

Chmielewski et al. supplementary material

Chmielewski et al. supplementary material 1

Download Chmielewski et al. supplementary material(File)
File 18.4 KB
Supplementary material: PDF

Chmielewski et al. supplementary material

Chmielewski et al. supplementary material 2

Download Chmielewski et al. supplementary material(PDF)
PDF 434.2 KB