Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-16T06:43:19.660Z Has data issue: false hasContentIssue false

Large-Volume Liquid Scintillation Counting of Carbon-14

Published online by Cambridge University Press:  18 July 2016

Lorenz Eichinger
Affiliation:
Institut für Radiohydrometrie der Gesellschaft für Strahlen- und Umweltforschung, Neuherberg, Federal Republic of Germany
Werner Rauert
Affiliation:
Institut für Radiohydrometrie der Gesellschaft für Strahlen- und Umweltforschung, Neuherberg, Federal Republic of Germany
Josef Salvamoser
Affiliation:
Institut für Radiohydrometrie der Gesellschaft für Strahlen- und Umweltforschung, Neuherberg, Federal Republic of Germany
Manfred Wolf
Affiliation:
Institut für Radiohydrometrie der Gesellschaft für Strahlen- und Umweltforschung, Neuherberg, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Efforts have been undertaken to further improve the relatively simple technique of low-level liquid scintillation counting of 14C. Two different approaches have been made. By synthesizing more benzene for 14C measurement than usual (with up to 19.5g of carbon) an experimental detection limit of about 0.1 percent modern has been achieved (97.5% confidence level, 1000 min). Absorption of CO2 with up to 5.3g of carbon in 160ml of an absorbent-scintillation solution and counting in a special measuring chamber resulted in an experimental detection limit of about 1 percent modern, with the sample preparation taking only 1 hour. The detection limits achieved by the two techniques correspond to 14C ages of about 55,000 and 35,000 years BP, respectively.

Type
Techniques
Copyright
Copyright © The American Journal of Science 

References

Arslanov, K A, Gromova, L I, Polevaya, N I, Rudnev, Y P, 1968, Carbon dating by the scintillation method: Geochem int 5, 1/1968, translated from Geokhimiya, no 2 p 198206.Google Scholar
Burleigh, R, Hewson, A D, and Matthews, K J, 1977, Synthesis of benzene for low-level 14C measurement: A review, in Crook, M A and Johnson, P, eds, Liquid scintillation counting, v 5: London, Heyden, p 205209.Google Scholar
Geyh, M A, 1972, A comparison: Proportional counter and liquid scintillation spectrometer for radiocarbon dating, in Rafter, T A and Grant-Taylor, T, eds, Internatl radiocarbon dating conf, 8th, Proc: Wellington, Royal Soc New Zealand, v 1, p B81-B93.Google Scholar
Iwakura, T, Kasida, Y, Inoue, Y, and Tokunaga, N, 1979, A low-background liquid scintillation counter for measurement of low-level tritium, in Behaviour of tritium in the environment: IAEA Proc ser, Vienna, p 163171.Google Scholar
Laney, B H, 1971, Electronic rejection of optical crosstalk in a twin photo tube scintillation counter, in Horrocks, D L and Chin-Tzu Peng, eds, Organic scintillators and liquid scintillation counting: New York and London, Academic Press, p 9911003.Google Scholar
L'Orange, H R, 1969, C-14 aus Kernwaffenexplosionen als Indikator für den physiologischen Kohlenstoffaustausch in Menschenknochen: Thesis, Tech Univ Berlin.Google Scholar
Rapkin, E and Reich, A, 1972, Automatische Verbrennung für routinemäβige Probenaufbereitung in der Flüssigkeits-Szintillations-Spektrometrie: Chemie-Technik 1, p 439443.Google Scholar