Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T07:00:30.830Z Has data issue: false hasContentIssue false

The Influence of Calibration Curve Construction and Composition on the Accuracy and Precision of Radiocarbon Wiggle-Matching of Tree Rings, Illustrated by Southern Hemisphere Atmospheric Data Sets from AD 1500–1950

Published online by Cambridge University Press:  28 May 2019

Alan G Hogg*
Affiliation:
Waikato Radiocarbon Laboratory, University of Waikato, Private Bag 3105, Hamilton, New Zealand
Timothy J Heaton
Affiliation:
School of Mathematics and Statistics, University of Sheffield, United Kingdom
Christopher Bronk Ramsey
Affiliation:
Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, United Kingdom
Gretel Boswijk
Affiliation:
School of Environment, University of Auckland, New Zealand
Jonathan G Palmer
Affiliation:
Palaeontology, Geobiology and Earth Archives Research Centre and ARC Centre of Excellence in Australian Biodiversity and Heritage, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
Chris S M Turney
Affiliation:
Palaeontology, Geobiology and Earth Archives Research Centre and ARC Centre of Excellence in Australian Biodiversity and Heritage, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
John Southon
Affiliation:
Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA
Warren Gumbley
Affiliation:
Department of Archaeology and Natural History, Australian National University, Canberra, Australia
*
*Corresponding author. Email: [email protected].

Abstract

This research investigates two factors influencing the ability of tree-ring data to provide accurate 14C calibration information: the fitness and rigor of the statistical model used to combine the data into a curve; and the accuracy, precision and reproducibility of the component 14C data sets. It presents a new Bayesian spline method for calibration curve construction and tests it on extant and new Southern Hemisphere (SH) data sets (also examining their dendrochronology and pretreatment) for the post-Little Ice Age (LIA) interval AD 1500–1950. The new method of construction allows calculation of component data offsets, permitting identification of laboratory and geographic biases. Application of the new method to the 10 suitable SH 14C data sets suggests that individual offset ranges for component data sets appear to be in the region of ± 10 yr. Data sets with individual offsets larger than this need to be carefully assessed before selection for calibration purposes. We identify a potential geographical offset associated with the Southern Ocean (high latitude) Campbell Island data. We test the new methodology for wiggle-matching short tree-ring sequences and use an OxCal simulation to assess the likely precision obtainable by wiggle-matching in the post-LIA interval.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Baillie, MGL, Pilcher, JR. 1973. A simple crossdating program for tree-ring research. Tree-Ring Bulletin 33:714.Google Scholar
Bayliss, A, Marshall, P, Tyers, C, Ramsey, CB, Cook, G, Freeman, SP, Griffiths, S. 2017. Informing conservation: towards 14C wiggle-matching of short tree-ring sequences from medieval buildings in England. Radiocarbon 59(3):9851007.10.1017/RDC.2016.61CrossRefGoogle Scholar
Blackwell, PG, Buck, CE. 2008. Estimating radiocarbon calibration curves. Bayesian Analysis 3(2):225248.CrossRefGoogle Scholar
Braziunas, TF, Fung, IY, Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9(4):565584.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):10231045.CrossRefGoogle Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr BP. Science 338(6105):370374.CrossRefGoogle Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43(2A):381389.CrossRefGoogle Scholar
Capano, M, Miramont, C, Guibal, F, Kromer, B, Tuna, T, Fagault, Y, Bard, E. 2018. Wood 14C dating with AixMICADAS: methods and application to tree-ring sequences from the younger dryas event in the Southern French Alps. Radiocarbon 60(1):5174.CrossRefGoogle Scholar
Cullen, LE, Grierson, PF. 2009. Multi-decadal scale variability in autumn-winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris. Climate Dynamics 33(2–3):433444.CrossRefGoogle Scholar
D’Arrigo, RD, Buckley, BM, Cook, ER, Wagner, WS. 1996. Temperature-sensitive tree-ring width chronologies of pink pine (Halocarpus biformis) from Stewart Island, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 119(3–4):293300.CrossRefGoogle Scholar
Dee, MW, Brock, F, Harris, SA, Ramsey, CB, Shortland, AJ, Higham, TF, Rowland, JM. 2010. Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. Journal of Archaeological Science 37(4):687693.CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12, 460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):11111122.CrossRefGoogle Scholar
Galimberti, M, Ramsey, CB, Manning, SW. 2004. Wiggle-match dating of tree-ring sequences. Radiocarbon 46(2):917924.CrossRefGoogle Scholar
Grissino-Mayer, HD. 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57(2):205221.Google Scholar
Heaton, TJ, Blackwell, PG, Buck, CE. 2009. A Bayesian approach to the estimation of radiocarbon calibration curves: the IntCal09 methodology. Radiocarbon 51(4):11511164.CrossRefGoogle Scholar
Heaton, TJ, Blaauw, M, Blackwell, PG, Ramsey, CB, Reimer, PJ, Scott, ME. 2019 (forthcoming) The IntCal19 approach to radiocarbon calibration curve construction: a new implementation using Bayesian Splines and errors-in-variables. Radiocarbon 62(1).Google Scholar
Hogg, AG, McCormac, FG, Higham, TF, Reimer, PJ, Baillie, MG, Palmer, JG. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon 44(3):633640.CrossRefGoogle Scholar
Hogg, A, Palmer, J, Boswijk, G, Turney, C. 2011. High-precision radiocarbon measurements of tree-ring dated wood from New Zealand: 195 BC–AD 995. Radiocarbon 53(3):529542.CrossRefGoogle Scholar
Hogg, A, Lowe, DJ, Palmer, J, Boswijk, G, Ramsey, CB. 2012. Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set. The Holocene 22(4):439449.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CS. 2013a. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):18891903.CrossRefGoogle Scholar
Hogg, A, Turney, C, Palmer, J, Southon, J, Kromer, B, Ramsey, CB, Boswijk, G, Fenwick, P, Noronha, A, Staff, R, Friedrich, M. 2013b. The New Zealand kauri (Agathis Australis) research project: a radiocarbon dating intercomparison of younger dryas wood and implications for IntCal13. Radiocarbon 55(4):20352048.CrossRefGoogle Scholar
Hogg, A, Southon, J, Turney, C, Palmer, J, Ramsey, CB, Fenwick, P, Boswijk, G, Büntgen, U, Friedrich, M, Helle, G, Hughen, K. 2016. Decadally resolved lateglacial radiocarbon evidence from New Zealand kauri. Radiocarbon 58(4):709733.CrossRefGoogle Scholar
Hogg, A, Gumbley, W, Boswijk, G, Petchey, F, Southon, J, Anderson, A, Roa, T, Donaldson, L. 2017. The first accurate and precise calendar dating of New Zealand Māori Pā, using Otāhau Pā as a case study. Journal of Archaeological Science: reports 12:124133.CrossRefGoogle Scholar
Holmes, RL. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43:6978.Google Scholar
Hong, W, Park, JH, Park, G, Sung, KS, Park, WK, Lee, JG. 2013. Regional offset of radiocarbon concentration and its variation in the Korean atmosphere from AD 1650–1850. Radiocarbon 55(2):753762.CrossRefGoogle Scholar
Hoper, ST, McCormac, FG, Hogg, AG, Higham, TF, Head, M. 1998. Evaluation of wood pretreatments on oak and cedar. Radiocarbon 40(1):4550.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Zoppi, U, Fink, D, Watanasak, M, Jacobsen, GE. 2004. Radiocarbon in tropical tree rings during the little ice age. Nuclear Instruments and Methods in Physics Research B 223:489494.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294(5551):25292532.CrossRefGoogle ScholarPubMed
Manning, SW, Kromer, B, Kuniholm, PI, Newton, MW. 2001. Anatolian tree rings and a new chronology for the east Mediterranean Bronze-Iron Ages. Science 294(5551):25322535.CrossRefGoogle Scholar
Manning, SW, Höflmayer, F, Moeller, N, Dee, MW, Ramsey, CB, Fleitmann, D, Higham, T, Kutschera, W, Wild, EM. 2014. Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity 88(342):11641179.CrossRefGoogle Scholar
McCormac, FG, Baillie, MG, Pilcher, JR, Kalin, RM. 1995. Location-dependent differences in the 14C content of wood. Radiocarbon 37(2):395407.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Higham, TF, Lynch Stieglitz, J, Broecker, WS, Baillie, MG, Palmer, JG, Xiong, L, Pilcher, JR, Brown, DS, Hoper, ST. 1998. Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25(9):13211324.10.1029/98GL01065CrossRefGoogle Scholar
McCormac, FG, Reimer, PJ, Hogg, AG, Higham, TF, Baillie, MG, Palmer, J, Stuiver, M. 2002. Calibration of the radiocarbon time scale for the Southern Hemisphere: AD 1850–950. Radiocarbon 44(3):641651.CrossRefGoogle Scholar
Nakamura, T, Masuda, K, Miyake, F, Nagaya, K, Yoshimitsu, T. 2013. Radiocarbon ages of annual rings from Japanese wood: evident age offset based on IntCal09. Radiocarbon 55(2):763770.CrossRefGoogle Scholar
Niu, M, Heaton, TJ, Blackwell, PG, Buck, CE. 2013. The Bayesian approach to radiocarbon calibration curve estimation: the IntCal13, Marine13, and SHCal13 methodologies. Radiocarbon 55(4):19051922.CrossRefGoogle Scholar
Palmer, JG, Xiong, L. 2004. New Zealand climate over the last 500 years reconstructed from Libocedrus bidwillii Hook. f. tree-ring chronologies. The Holocene 14(2):282289.CrossRefGoogle Scholar
Palmer, JG, Turney, CSM, Hogg, AG, Hilliam, N, Watson, M, van Sebille, E, Cowie, W, Jones, R, Petchey, F. 2014. The discovery of New Zealand’s oldest shipwreck—possible evidence of further Dutch exploration of the South Pacific. Journal of Archaeological Science 42:435441.CrossRefGoogle Scholar
Palmer, JG, Cook, ER, Turney, CS, Allen, K, Fenwick, P, Cook, BI, O’Donnell, A, Lough, J, Grierson, P, Baker, P. 2015. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environmental Research Letters 10(12):124002.CrossRefGoogle Scholar
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4):11471156.CrossRefGoogle Scholar
Pearson, CL, Brewer, PW, Brown, D, Heaton, TJ, Hodgins, GWL, Jull, AJT, Lange, T, Salzer, MW. 2018. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances 4:eaar8241.CrossRefGoogle ScholarPubMed
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Brown, DM, Buck, CE, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, van der Plicht, J. 2013a. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55(4):19231945.CrossRefGoogle Scholar
Reimer, P, Bard, E, Bayliss, A, Beck, W, Blackwell, P, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, L, Friedrich, M, Grootes, P, Guilderson, T, Haflidason, H, Hajdas, I, Hatté, C, Heaton, T, Hoffmann, D, Hogg, A, Hughen, K, Kaiser, F, Kromer, B, Manning, S, Niu, M, Reimer, R, Richards, D, Scott, M, Southon, J, Staff, R, Turney, C, van der Plicht, J. 2013b. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Rodgers, KB, Mikaloff-Fletcher, SE, Bianchi, D, Beaulieu, C, Galbraith, ED, Gnanadesikan, A, Hogg, AG, Iudicone, D, Lintner, BR, Naegler, T, Reimer, PJ. 2011. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Climate of the Past 7(4):11231138.CrossRefGoogle Scholar
Scott, EM, Naysmith, P, Cook, GT. 2017. Why do we need 14C inter-comparisons?: the Glasgow-14C inter-comparison series, a reflection over 30 years. Quaternary Geochronology 43:7282.CrossRefGoogle Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):13711379.CrossRefGoogle Scholar
Southon, J, Noronha, AL, Cheng, H, Edwards, RL, Wang, Y. 2012. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quaternary Science Reviews 33:3241.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25(3):329332.CrossRefGoogle Scholar
Taylor, R, Bar-Yosef, O. 2014. Radiocarbon Dating: an Archaeological Perspective. 2nd Edition. New York: Routledge.Google Scholar
Turney, CSM, Fogwill, CJ, Palmer, JG, van Sebille, E, Thomas, Z, McGlone, M, Richardson, S, Wilmshurst, JM, Fenwick, P, Zunz, V, Goosse, H, Wilson, KJ, Carter, L, Lipson, M, Jones, RT, Harsch, M, Clark, G, Marzinelli, E, Rogers, T, Rainsley, E, Ciasto, L, Waterman, S, Thomas, ER, Visbeck, M. 2017. Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction. Climate of the Past 13:231248.CrossRefGoogle Scholar
Turney, CS, Palmer, J, Hogg, A, Fogwill, CJ, Jones, RT, Bronk Ramsey, C, Fenwick, P, Grierson, P, Wilmshurst, J, O’Donnell, A, Thomas, ZA. 2016. Multidecadal variations in Southern Hemisphere atmospheric 14C: evidence against a Southern Ocean sink at the end of the Little Ice Age CO2 anomaly. Global Biogeochemical Cycles 30(2):211218.CrossRefGoogle Scholar
Turney, CS, Palmer, J, Maslin, MA, Hogg, A, Fogwill, CJ, Southon, J, Fenwick, P, Helle, G, Wilmshurst, JM, McGlone, M, Ramsey, CB. 2018. Global peak in atmospheric radiocarbon provides a potential definition for the onset of the Anthropocene epoch in 1965. Scientific Reports 8(1):3293.CrossRefGoogle ScholarPubMed
Tyers, I. 1997. Dendro for Windows program guide. Report No.: 340. Sheffield (UK): Archaeological Research and Consultancy at University of Sheffield.Google Scholar
Vogel, JC, Fuls, A, Visser, E, Becker, B. 1986. Radiocarbon fluctuations during the third millennium BC. Radiocarbon 28(2B):935938.CrossRefGoogle Scholar
Vogel, JC, Fuls, A, Visser, E, Becker, B. 1993. Pretoria calibration curve for short-lived samples, 1930–3350 BC. Radiocarbon 35(1):7385.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.CrossRefGoogle Scholar
Xiong, L, Palmer, JG. 2000a. Reconstruction of New Zealand temperatures back to AD 1720 using Libocedrus bidwillii tree rings. Climatic Change 45(2):339359.CrossRefGoogle Scholar
Xiong, L, Palmer, JG. 2000b. Libocedrus bidwillii tree-ring chronologies in New Zealand. Tree-Ring Bulletin 56:116.Google Scholar