Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:04:34.412Z Has data issue: false hasContentIssue false

Increase in Radiocarbon Concentration in Tree Rings from Kujawy Village (Se Poland) Around Ad 993–994

Published online by Cambridge University Press:  10 September 2018

Andrzej Z Rakowski*
Affiliation:
Institute of Physics – Center for Science and Education, Silesian University of Technology, Konarskiego str 22B, 44-100Gliwice, Poland
Marek Krąpiec
Affiliation:
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059Krakow, Poland
Mathias Huels
Affiliation:
Leibniz-Laboratory for Radiometric Dating and Isotope Research, University of Kiel, Max-Eyth-Str. 11-13, 24118Kiel, Germany
Jacek Pawlyta
Affiliation:
Institute of Physics – Center for Science and Education, Silesian University of Technology, Konarskiego str 22B, 44-100Gliwice, Poland
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Department of Laboratories, Brussels, Belgium
*
*Corresponding author. Email: [email protected].

Abstract

An increase in atmospheric radiocarbon (14C) content of about 11.3‰ in the period AD 993–994 was observed in annual tree rings from Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) (Miyake et al. 2013, 2014). Single-year samples of dendrochronologically dated tree rings (English oak, Quercus robur) from Kujawy, a village near Krakow (SE Poland), spanning the years AD 981–1000, were collected, and their 14C content was measured using the AMS system in the Leibniz Laboratory. The results clearly show an increase of 6.2±1.6‰ in the 14C concentration in tree rings between AD 993 and 994, with a maximum increase of 10.9±1.7‰ between AD 991 and 994.

Type
Trees
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baillie, MGL, Pilcher, JR. 1973. A simple cross dating program for tree-ring research. Tree-Ring Bulletin 33:714.Google Scholar
Boettger, T, Haupt, M, Knöller, K, Weise, SM, Waterhouse, JS, Rinne, KT, Loader, NJ, et al. 2007. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: An interlaboratory comparison. Analytical Chemistry 79(12):46034612, doi: 10.1021/ac0700023.Google Scholar
Castagnoli, G, Lal, D. 1980. Solar modulation effects in terrestrial production of carbón-14. Radiocarbon 22:133158.Google Scholar
Coplen, TB, Brand, WA, Gehre, M, Groning, M, Meijer, HA, Toman, B, Verkoutern, RM. 2006. New Guidelines for δ13C Measurements. Anal. Chem 78:24392441.Google Scholar
Eckstein, D, Bauch, J. 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230250.Google Scholar
Fogtmann-Schulz, A, Ostbo, SM, Nielsen, SGB, Olsen, J, Karoff, C, Knudsen, MF. 2017. Cosmic ray event in 994 CE recorded in radiocarbon from Danish oak. Geophysical Research Letters 44(16):86218628.Google Scholar
Green, JW. 1963. Methods of carbohydrate chemistry. In: Whistler RL, editor. Methods in Carbohydrate. New York: Academic Press. p 9–21.Google Scholar
Güttler, D, Beer, J, Bleicher, N, Boswijk, G, Hogg, AG, Palmer, JG, Vockenhuber, C, Wacker, L, Wunder, J. 2013. Worldwide detection of a rapid increase of cosmogenic 14C in AD 775. Poster presented at the Nuclear Physics in Astrophysics Conference.Google Scholar
Güttler, D, Adolphi, F, Beer, J, Bleicher, N, Boswijk, G, Christl, M, Hogg, A, Palmer, J, Vockenhuber, C, Wacker, L, Wunder, J. 2015. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth and Planetary Science Letters 411:290297.Google Scholar
Holmes, RL. 1999. Users Manual for Program COFECHA. Tucson (AZ): University of Arizona.Google Scholar
IAEA. 2014. Materials with known 2H, 13C, 15N and 18O isotopic composition, IAEA-CH-3 Cellulose. Available at http://nucleus.iaea.org/rpst/ReferenceProducts/ReferenceMaterials/Stable_Isotopes/2H13C15Nand18O/IAEA-CH-3.htm accessed 24/10/2014.Google Scholar
Jull, AJT, Panyushkina, IP, Lange, TE, Kukarskih, VV, Myglan, VS, Clark, KJ, Salzer, MW, Burr, GS, Leavitt, SW. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophysical Research Letters 41(8):30043010.Google Scholar
Krąpiec, M. 2001. Holocene dendrochronological standards for subfossil oaks from the area of Southern Poland. Studia Quaternaria 18:4763.Google Scholar
Krawczyk, A, Krąpiec, M. 1995. Dendrochronologiczna baza danych. Materiały II Krajowej Konferencji: Komputerowe wspomaganie badań naukowych (Dendrochronological database. Proceedings of the Second Polish Conference on Computer Assistance to Scientific Research). Wrocław: 247–252 (in Polish).Google Scholar
Lassen, K, Friis-Christensen, E. 1995. Variability of the solar cycle length during the past five centuries and the apparent association with terrestrial climate. Journal of Atmospheric and Terrestrial Physics 57(8):835845.Google Scholar
Lean, J, Skumanich, A, White, O. 1992. Estimating the Sun’s radiative output during the Maunder Minimum. Geophysical Research Letters 19(15):15911594.Google Scholar
Mekhaldi, F, Muscheler, R, Adolphi, F, Aldahan, A, Beer, J, McConnell, JR, Possnert, G, Sigl, M, Svensson, A, Synal, H-A, Welten, KC, Woodruff, TE. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6:8611.Google Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402):240242.Google Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748, doi: 10.1038/ncomms2873.Google Scholar
Miyake, F, Masuda, K, Hakozaki, M, Nakamura, T, Tokanai, F, Kato, K, Kimura, K, Mitsutani, T. 2014. Verification of the cosmic-ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56(3):11841194.Google Scholar
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239245.Google Scholar
Nadeau, M-J, Grootes, PM. 2013. Calculation of the compounded uncertainty of 14C AMS measurements. Nuclear Inst. and Methods in Physics Research B 294:420425.Google Scholar
Pazdur, A, Korput, S, Fogtman, M, Szczepanek, M, Hałas, S, Krąpiec, E, Szychowska-Krąpiec, E. 2005. Carbon-13 in α-cellulose of oak latewood (Jędrzejów, southern Poland) during the Maunder minimum. Geological Quarterly 49(2):165172.Google Scholar
Park, J, Southon, J, Fahrni, S, Creasman, PP, Mewaldt, R. 2017. Relationship between solar activity andΔ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59(4):11471156.Google Scholar
Peristykh, AN, Damon, PE. 2003. Persistence of the Gleissberg 88-year solar cycle over the last ∼12,000 years: Evidence from cosmogenic isotopes. Journal of Geophysical Research: Space Physics 108(A1):1003, doi: 10.1029/2002JA009390.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, WJ, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffman, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, CSM, Turney, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rakowski, AZ, Krapiec, M, Huels, M, Pawlyta, J, Dreves, A, Meadows, J. 2015. Increase of radiocarbon concentration in tree rings from Kujawy village (SE Poland) around AD 774–775. Nuclear Instruments and Methods in Physics Research B 351:564568.Google Scholar
Rinn, F. 2005. TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. User reference. Heidelberg.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363.Google Scholar
Treydte, K, Frank, D, Esper, J, Andreu, L, Bednarz, Z, Berninger, F, Boettger, T, D’alessandro, CM, Etien, N, Filot, M, Grabner, M, et al. 2007. Signal strength and climate calibration of a European treering isotope network. Geophysical Research Letters 34(24).Google Scholar
Usoskin, IG, Kovaltsov, GA. 2012. Occurrence of extreme solar particle events: assessment from historical proxy data. The Astrophysical Journal 757:92.Google Scholar
Usoskin, IG, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltsov, GA, Solanki, S, Wacker, L. 2013. The AD 775 cosmic event revisited: The Sun is to blame. Astron. Astrophys. 552:L3, doi: 10.1051/0004-6361/201321080.Google Scholar
Wacker, L, Guttler, D, Goll, J, Hurni, J, Synal, H-A, Walti, N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56(2):573579, doi: 10.2458/56.17634.Google Scholar