Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T13:44:45.807Z Has data issue: false hasContentIssue false

The IFAO Radiocarbon Laboratory: A Status Report

Published online by Cambridge University Press:  01 June 2017

Anita Quiles*
Affiliation:
Institut Français d’Archéologie Orientale, Pôle Archéométrie, 37 al-Cheikh Aly Youssef Street, B.P. Qasr el-Ayni 11652, 11441 Cairo, Egypt
Nagui Sabri Kamal
Affiliation:
Institut Français d’Archéologie Orientale, Pôle Archéométrie, 37 al-Cheikh Aly Youssef Street, B.P. Qasr el-Ayni 11652, 11441 Cairo, Egypt
Mostafa Abd’el Fatah
Affiliation:
Institut Français d’Archéologie Orientale, Pôle Archéométrie, 37 al-Cheikh Aly Youssef Street, B.P. Qasr el-Ayni 11652, 11441 Cairo, Egypt
Nadine Mounir
Affiliation:
Institut Français d’Archéologie Orientale, Pôle Archéométrie, 37 al-Cheikh Aly Youssef Street, B.P. Qasr el-Ayni 11652, 11441 Cairo, Egypt
*
*Corresponding author. Email: [email protected].

Abstract

The Institut Français d’Archéologie Orientale (IFAO) in Cairo is one of the major French research centers abroad. It is placed under the aegis of the French Ministry of Higher Education and Research and manages an archaeometry department that features laboratories for three units of research: conservation, material studies, and radiocarbon (14C). The 14C laboratory was founded in 2006 to offer the possibility of 14C dating in Egypt. It is totally devoted to archaeological issues, uses the conventional liquid scintillation counting (LSC) method, and is equipped with two benzene synthesis lines. This paper reports on the performances and quality-control procedures of the IFAO 14C laboratory, both from the perspective of the chemical syntheses and from the radiometric measurements (background dispersion, standards, intercomparison programs). It shows how this lab occupies a privileged position to develop interdisciplinary studies of Egyptian chronology and to offer high-standard competencies to the IFAO scientific research programs. Finally, it raises the question of the future perspectives of the laboratory.

Type
Technical Note
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, H. 1953. Radiocarbon dating: large-scale preparation of acetylene from organic material. Nature 172:631632.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Hogg, A. G. 2004. Towards achieving low background levels in routine dating by liquid scintillation spectrometry. Radiocarbon 46(1):123131.CrossRefGoogle Scholar
Lebon, M, Reiche, I, Gallet, X, Bellot-Gurlet, L, Zazzo, A. 2016. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon in press.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.Google Scholar
Noakes, J, Kim, S, Akers, L. 1967. Recent improvements in benzene chemistry for radiocarbon dating. Geochimica et Cosmochimica Acta 31:10941096.Google Scholar
Noakes, JE, Isbell, AF, Stipp, JJ, Hood, DW. 1963. Benzene synthesis by low temperature catalysis for radiocarbon dating. Geochimical Cosmochimical Acta 27(7):797804.Google Scholar
Polach, HA. 1979. Correlation of 14C activity of NBS oxalic acid with Arizona 1850 wood and ANU sucrose standards. In: Berger R, Suess HE, editors. Radiocarbon Dating. Proceedings of the 9th International 14C Conference. Berkeley: University of California Press. p 115–124.Google Scholar
Povinec, PP, Litherland, AE, von Reden, Karl. 2009. Developments in radiocarbon technologies: from the Libby counter to compound-specific AMS analyses. Radiocarbon 51(1):4578.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, L, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, T, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Scott, EM et al. 2003. Part 2: The Third International Radiocarbon Intercomparison (TIRI). Radiocarbon 45(2):293328.Google Scholar
Scott, EM et al. 2003. Section 10: summary and conclusions. Radiocarbon 43(2):285290.Google Scholar
Stuiver, M, Polach, HA. 1977. Reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Tamers, MA. 1975. Chemical yield optimization of the benzene synthesis for radiocarbon dating. International Journal of Applied Radiation and Isotopes 26:676682.Google Scholar