Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T06:20:47.718Z Has data issue: false hasContentIssue false

High-Resolution Peat Core Chronology Covering the Last 12 KYR Applying an Improved Peat Bog Sampling

Published online by Cambridge University Press:  19 November 2018

Katalin Hubay*
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, Bem Square 18/C, H-4026 Debrecen, Hungary
Mihály Braun
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, Bem Square 18/C, H-4026 Debrecen, Hungary
Sándor Harangi
Affiliation:
Department of Ecology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
László Palcsu
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, Bem Square 18/C, H-4026 Debrecen, Hungary
Marianna Túri
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, Bem Square 18/C, H-4026 Debrecen, Hungary
A J Timothy Jull
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, Bem Square 18/C, H-4026 Debrecen, Hungary Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
Mihály Molnár
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, Bem Square 18/C, H-4026 Debrecen, Hungary
*
*Corresponding author. Email: [email protected].

Abstract

This work focuses on building a high-resolution age-depth model for quantitative palaeoclimate study from the Mohos peat bog, East Carpathian mountains. The investigated core presents a continuous peat profile for the last 12 kyr. The chronology was based on 36 accelerator mass spectrometry radiocarbon (AMS 14C) analyses of the separated Sphagnum samples from different depths of the profile. Dry Sphagnum samples for AMS dating were prepared using the classic acid-base-acid (ABA) method followed with an oxidative bleaching step to get clean cellulose. Sphagnum cellulose samples were measured by AMS using the EnvironMICADAS at the ICER (Debrecen, Hungary). A high-resolution chronology was obtained with the use of Bayesian age-depth modeling. Peat accumulation rate has been calculated and the sections with variable accumulation rate values were observed along the profile.

Type
Soil
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

References

REFERENCES

Belekopytov, IE, Beresnevich, VV. 1955. Giktorf’s peat boreres. Torfyanaya Promyshlennost 8:910.Google Scholar
Bennett, KD. 1994. Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. The Holocene 4:337348. doi:10.1177/095968369400400401.Google Scholar
Björkman, L, Feurdean, A, Wohlfarth, B. 2003. Late-Glacial and Holocene forest dynamics at Steregoiu in the Gutaiului Mountains, Northwest Romania. Rev. Palaeobot. Palynol. 124:79111. doi:10.1016/S0034-6667(02)00249-X.Google Scholar
Blaauw, M, Bakker, R, Christen, JA, Valerie, Hall, van der Plicht, J. 2007. A Bayesian framework for age modeling of radiocarbon-dated peat deposits: Case studies from the Netherlands. Radiocarbon 49:357367.Google Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6:457474. doi:10.1214/11-BA618.Google Scholar
Brock, F, Lee, S, Housley, RA, Bronk Ramsey, C. 2011. Variation in the radiocarbon age of different fractions of peat: A case study from Ahrenshöft, northern Germany. Quat. Geochronol. 6:550555. doi:10.1016/j.quageo.2011.08.003.Google Scholar
Charman, D. 2002. Peatlands And Environmental Change. Chichester: John Wiley Sons Ltd. 301 p.Google Scholar
Constantin, S, Bojar, AV, Lauritzen, SE, Lundberg, J. 2007. Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: A speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeogr. Palaeoclimatol. Palaeoecol. 243:322338. doi:10.1016/j.palaeo.2006.08.001.Google Scholar
Cumming, BF, Glew, JR, Smol, JP, Davis, RB, Norton, SA. 1993. Comment on “Core compression and surficial sediment loss of lake sediments of high porosity caused by gravity coring” (Crusius and Anderson). Limnol. Oceanogr. 38:695699.Google Scholar
De Vleeschouwer, F, Chambers, FM, Swindles, GT. 2010. Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 7:110.Google Scholar
Demény, A, Czuppon, G, Siklósy, Z, Leél-Őssy, S, Lin, K, Shen, C-C, Gulyás, K. 2013. Mid-Holocene climate conditions and moisture source variations based on stable H, C and O isotope compositions of speleothems in Hungary. Quat. Int. 293:150156. doi:10.1016/j.quaint.2012.05.035.Google Scholar
Dragusin, V, Staubwasser, M, Hoffmann, DL, Ersek, V, Onac, BP, Veres, D. 2014. Constraining Holocene hydrological changes in the Carpathian-Balkan region using speleothem δ18O and pollen-based temperature reconstructions. Clim. Past 13631380. doi:10.5194/cp-10-1363-2014.Google Scholar
Harangi, S, Lukács, R, Schmitt, AK, Dunkl, I, Molnár, K, Kiss, B, Seghedi, I, Novothny, Á, Molnár, M. 2015. Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east-central Europe, from combined U-Th/He and U-Th zircon geochronology. J. Volcanol. Geotherm. Res. 301:6680. doi:10.1016/j.jvolgeores.2015.05.002.Google Scholar
Heiri, O, Lotter, AF, Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25:101110.Google Scholar
Hong, YT, Jiang, HB, Liu, TS, Zhou, LP, Beer, J, Li, HD, Leng, XT, Hong, B. 2000. Response of climate to solar forcing recorded in a 6000-year 18O time-series of Chinese peat cellulose. The Holocene. 10:17.Google Scholar
Hong, YT, Wang, ZG, Jiang, HB, Lin, QH, Hong, B, Zhu, YX, Wang, Y, Xu, LS, Leng, XT, Li, HD. 2001. A 6000-year record of changes in drought and precipitation in northeastern China based on a d13C time series from peat cellulose. Earth and Planetary Science Letters. 185:111119.Google Scholar
Janovics, R, Túri, M, Futó, I, Molnár, M. 2017. An easy way of sealed tube combustion for all kind of 14C dating. Radiocarbon: this issue.Google Scholar
Jowsey, PC. 1966. An improved peat sampler. New Phytol. 65:245248.Google Scholar
Kalnina, L, Stivrins, N, Kuske, E, Ozola, I, Pujate, A, Zeimule, S, Grudzinska, I, Ratniece, V. 2014. Peat stratigraphy and changes in peat formation during the Holocene in Latvia. Quat. Int. 383:186195. doi:10.1016/j.quaint.2014.10.020.Google Scholar
Karátson, D, Telbisz, T, Harangi, S, Magyari, E, Dunkl, I, Kiss, B, Jánosi, C, Veres, D, Braun, M, Fodor, E, Biró, T, Kósik, S, von Eynatten, H, Lin, D. 2013. Morphometrical and geochronological constraints on the youngest eruptive activity in East-Central Europe at the Ciomadul (Csomád) lava dome complex, East Carpathians. J. Volcanol. Geotherm. Res. 255, 4356. doi:10.1016/j.jvolgeores.2013.01.013.Google Scholar
Karátson, D, Wulf, S, Veres, D, Magyari, EK, Gertisser, R, Timar-Gabor, A, Novothny, Á, Telbisz, T, Szalai, Z, Anechitei-Deacu, V, Appelt, O, Bormann, M, Jánosi, C, Hubay, K, Schäbitz, F. 2016. The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians–A tephrostratigraphic approach for the 51–29 ka BP time interval. J. Volcanol. Geotherm. Res. 319:2951. doi:10.1016/j.jvolgeores.2016.03.005.Google Scholar
Kilian, MR, van der Plicht, J, van Geel, B. 1995. Dating raised bogs: New aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quat. Sci. Rev. 14:959996. doi:10.1016/0277-3791(95)00081-X.Google Scholar
Longman, J, Veres, D, Ersek, V, Salzmann, U, Hubay, K, Bormann, M, Wennrich, V, Schäbitz, F. 2017. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact. Clim. Past 131. doi:10.5194/cp-2017-6.Google Scholar
Magyari, E, Buczkó, K, Jakab, G, Braun, M, Pál, Z, Karátson, D, Pap, I. 2009. Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: A multiproxy study of Holocene hydrological changes. Hydrobiologia. doi:10.1007/s10750-009-9801-1.Google Scholar
Magyari, E, Sumegi, P, Braun, M, Jakab, G, Molnar, M. 2001. Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from north-east Hungary. J. Ecol. 89:10191032. doi:10.1111/j.1365-2745.2001.00624.x.Google Scholar
Magyari, EK, Demény, A, Duczkó, K, Kern, Z, Vennemann, T, Fórizs, I, Vincze, I, Braun, M, Kovács, JI, Udvardi, B, Veres, D. 2013. A 13,600-year diatom oxygen isotope record from the South Carpathians (Romania): Reflection of winter conditions and possible links with North Atlantic circulation changes. Quat. Int. 293:136149. doi:10.1016/j.quaint.2012.05.042.Google Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, TAJ. 2013a. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55:665676. doi:10.2458/azu_js_rc.55.16394.Google Scholar
Molnár, M, Rinyu, L, Veres, M, Seiler, MT, Wacker, L, Synal, H-A. 2013b. EnvironMICADAS: a mini 14C AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55:338344. doi:10.2458/azu_js_rc.55.16331.Google Scholar
Nemec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52:13581370.Google Scholar
Nilsson, M, Klarqvist, M, Bohlin, E, Possnert, G. 2001. Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. The Holocene 11:579586. doi:10.1191/095968301680223521.Google Scholar
Orsovszki, G, Rinyu, L. 2015. Flame-sealed tube graphitization using zinc as the sole reduction agent: precision improvement of EnvironMICADAS 14C measurement on graphite targets. Radiocarbon 57:979990. doi:10.2458/azu.Google Scholar
Pécskay, Z, Lexa, J, Szakács, A, Balogh, K, Seghedi, I, Konečný, V, Kovács, M, Márton, E, Kaličiak, M, Széky-Fux, V, Póka, T, Gyarmati, P, Edelstein, O, Rosu, E, Žec, B. 1995. Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian Region. Acta Vulcanol. 7:1528.Google Scholar
Pécskay, Z, Szakács, A, Seghedi, I, Karátson, D. 1992. Contributions to the geochronology of Mt. Cucu volcano and the South Harghita (East Carpathians, Romania). Földtani Közlöny (Bull. Hung. Geol. Soc.), Budapest 122/2–4:265286.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, ME, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:18691887. doi:10.2458/azu_js_rc.55.16947.Google Scholar
Rinyu, L, Molnár, M, Major, I, Nagy, T, Veres, M, Kimák, Á, Wacker, L, Synal, HA. 2013. Optimization of sealed tube graphitization method for environmental C-14 studies using MICADAS. Nucl. Instruments Methods Phys. Res. B 294:270275. doi:10.1016/j.nimb.2012.08.042.Google Scholar
Rinyu, L, Orsovszki, G, Futó, I, Veres, M, Molnár, M. 2015. Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS. Nucl. Instruments Methods Phys. Res. B 361:406413. doi:10.1016/j.nimb.2015.03.083.Google Scholar
Schnitchen, C, Charman, DJ, Magyari, E, Braun, M, Grigorszky, I, Tóthmérész, B, Molnár, M, Szántó, Z. 2006. Reconstructing hydrological variability from testate amoebae analysis in Carpathian peatlands. J. Paleolimnol. 36:117. doi:10.1007/s10933-006-0001-y.Google Scholar
Shore, JS, Bartley, DD, Harkness, DD. 1995. Problems encountered with the 14C dating of peat. Quat. Sci. Rev. 14:373383. doi:10.1016/S0277-3791(14)00448-X.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35:215230.Google Scholar
Szakács, A, Seghedi, I, Pécskay, Z. 1993. Pecularities of South Harghita Mts. as the terminal segment of the Carpathian Neogene to Quaternary volcanic chain. Rev. Roum. Géologie, Géophysique Géographie. Série Géologie (Bucharest) 37:2136.Google Scholar
Szakács, A, Seghedi, I, Pécskay, Z, Mirea, V. 2015. Eruptive history of a low-frequency and low-output rate Pleistocene volcano, Ciomadul, South Harghita Mts, Romania. Bull. Volcanol. 77. doi:10.1007/s00445-014-0894-7 Google Scholar
Tantau, I, Reille, M, de Beaulieu, J-L, Farcas, S, Goslar, T, Paterne, M. 2003. Vegetation history in the Eastern Romanian Carpathians: pollen analysis of two sequences from the Mohos crater. Veg. Hist. Archaeobot. 12:113125. doi:10.1007/s00334-003-0015-6.Google Scholar
Törnqvist, TE, De Jong, FM, Oosterbaan, WA, Vander Borg, K. 1992. Accurate dating of organic deposits by AMS C-14 measurement of macrofossils. Radiocarbon 34:566577.Google Scholar
Willis, KJ, Braun, M, Sümegi, P, Tóth, A. 1997. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology. doi:10.1890/0012-9658(1997)078[0740:DSCCVC]2.0.CO;2.Google Scholar
Willis, KJ, Sümegi, P, Braun, M, Tóth, A. 1995. The late Quaternary environmental history of Bátorliget, N.E. Hungary. Palaeogeogr. Palaeoclimatol. Palaeoecol. doi:10.1016/0031-0182(95)00004-6.Google Scholar
Wohlfarth, B, Hannon, G, Feurdean, A, Ghergari, L, Onac, BP, Possnert, G. 2001. Reconstruction of climatic and environmental changes in NW Romania during the early part of the last deglaciation (∼15,000–13,600 cal yr BP). Quat. Sci. Rev. 20:18971914. doi:10.1016/S0277-3791(01)00014-2.Google Scholar
Wright, HE. 1993. Core compression. Limnol. Oceanogr. 38:699701.Google Scholar