Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T16:36:56.018Z Has data issue: false hasContentIssue false

The Half-Life of 14C—Why Is It So Long?

Published online by Cambridge University Press:  15 April 2019

Walter Kutschera*
Affiliation:
University of Vienna, Faculty of Physics – Isotope Physics, Vienna Environmental Research Accelerator (VERA), Währinger Str. 17, A-1090 Vienna, Austria
*
Corresponding author. Email: [email protected].

Abstract

The half-life of radiocarbon (14C) is 5700 ± 30 yr, which makes it particularly useful for dating in archaeology. However, only an exceptional hindrance of the beta decay from 14C to 14N—a so-called Gamow-Teller ß-decay—makes this half-life so long. A normal strength would result in a half-life of only a few days, completely useless for archaeological dating. The unusual hindrance is based on the nuclear structure of the two nuclei, resulting in strongly destructive interferences of the nuclear transition matrix element. Nuclear model calculation with great computational efforts have been performed in the literature to reproduce the very low transition probability. Here, we will attempt to describe the nuclear physics behind this most unusual half-life.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Anderson, EC, Libby, WF, Weinhouse, S, Reid, AF, Kirshenbaum, AD, Grosse, AV. 1947. Natural radiocarbon from cosmic radiation. Physical Review 72:931936.CrossRefGoogle Scholar
Arnold, JR, Libby, WF. 1949. Age determination by radiocarbon content: checks with samples of known age. Science 110:678680.CrossRefGoogle Scholar
Bella, F, Alessio, M, Fratelli, P. 1968. A determination of the half-life of 14C. Il Nuovo Cimento 58B:233246.Google Scholar
Chadwick, J. 1932a. Possible existence of a neutron. Nature 129(3252):312.CrossRefGoogle Scholar
Chadwick, J. 1932b. The existence of a neutron. Proceedings of the Royal Society A 136 (830):692708.CrossRefGoogle Scholar
Dee, MD, Brock, F, Harris, SA, Bronk Ramsey, C, Shortland, AJ, Higham, TFG, Rowland, JM. 2010. Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. Journal of Archaeological Science 37:687693.CrossRefGoogle Scholar
Engelkemeir, AG, Hamill, WH, Inghram, MG, Libby, WF. 1949. The half-life of radiocarbon (C14). Physical Review 75:18251833.CrossRefGoogle Scholar
Engelkemeir, AG, Libby, WF. 1950. End and wall corrections for absolute beta-counting in gas counters. Review of Scientific Instruments 21:550554.CrossRefGoogle ScholarPubMed
Fermi, E. 1934. Versuch einer Theorie der ß-Strahlen. I. Zeitschrift für Physik 88:161177.CrossRefGoogle Scholar
Freer, M, Fynbo, H. 2014. The Hoyle state in 12C. Progress in Particle and Nuclear Physics 78:123.CrossRefGoogle Scholar
Freer, M, Horiuchi, H, Kanada-En’yo, Y, Lee, D, Meißner, U-G. 2018. Microscopic clustering in light nuclei. Reviews of Modern Physics 90:035004, 146.CrossRefGoogle Scholar
Gamow, G, Teller, E. 1936. Selection rules for the ß-disintegration. Physical Review 49:895899.10.1103/PhysRev.49.895CrossRefGoogle Scholar
Godwin, H. 1962. Radiocarbon dating, fifth international conference. Nature 195:943945.CrossRefGoogle Scholar
Hafstad, LR, Teller, E. 1938. The alpha-particle model of the nucleus. Physical Review 54: 681692.CrossRefGoogle Scholar
Heisenberg, W. 1932. Über den Bau der Atomkerne. I. Zeitschrift für Physik 77(1–2):111.CrossRefGoogle Scholar
Holt, JW, Brown, GE, Kuo, TTS, Holt, JD, Machleidt, R. 2008. Shell model description of the 14C dating ß decay with Brown-Rho-Scaled NN interaction. Physical Review Letters 100: 062501.CrossRefGoogle Scholar
Holt, JW, Kaiser, N, Weise, W. 2009. Chiral three-nucleon interaction and the 14C-dating ß decay. Physical Review C 79:054331, 111.CrossRefGoogle Scholar
Hoyle, F. 1954. On nuclear reactions occuring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophysical Journal Supplement 1:121146.CrossRefGoogle Scholar
Hughes, EE, Mann, WB. 1964. The half-life of carbon-14: comments on the mass-spectrometric methods. International Journal of Applied Radiation and Isotopes 15:97100.CrossRefGoogle Scholar
Inglis, DR. 1953. The energy levels and the structure of light nuclei. Reviews of Modern Physics 25(2):390450.CrossRefGoogle Scholar
Jancovici, B, Talmi, I. 1954. Tensor forces and the ß decay of C14 and O14. Physical Review 95:289291.CrossRefGoogle Scholar
Jones, WM. 1949. A determination of the half-life of carbon 14. Physical Review 76(7):885889.CrossRefGoogle Scholar
Korff, SA, Hamermesh, B. 1946. The energy distribution and number of cosmic-ray neutrons in the free atmosphere. Physical Review 69:155159.CrossRefGoogle Scholar
Kutschera, W. 2013. Application of accelerator mass spectrometry. International Journal of Mass Spectrometry 349–350:203218.CrossRefGoogle Scholar
Libby, WF. 1946. Atmospheric helium three and radiocarbon from cosmic radiation. Physical Review 69:671672.CrossRefGoogle Scholar
Libby, WF. 1952. Half-life of radiocarbon. In: Libby, WF, editor. Radiocarbon dating. Chicago & London: University of Chicago Press. p. 3442.Google Scholar
Libby, WF, Anderson, EC, Arnold, JR. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109:227228.CrossRefGoogle ScholarPubMed
Mann, WB, Marlow, WF, Hughes, EE. 1961. The half-life of carbon-14. International Journal of Applied Radiation and Isotopes 11:5767.CrossRefGoogle ScholarPubMed
Maris, P, Vary, JP, Navrátil, P, Ormand, WE, Nam, H, Dean, DJ. 2011. Origin of the anomalous long lifetime of 14C. Physical Review Letters 106:202502.CrossRefGoogle Scholar
Miller, WW, Ballentine, R, Bernstein, W, Friedman, L, Nier, AO, Evans, RD. 1950. The half-life of carbon fourteen and a comparison of gas phase counter methods. Physical Review 77(5): 714715.CrossRefGoogle Scholar
Mößbauer, RL. 1998. History of Neutrino Physics: Pauli’s Letters. In: Altmann, M, Hillebrandt, W, Janka, H-T, Raffelt, G, editors. Proceedings of the Workshop on Neutrino Astrophysics at Ringberg Castle, 20–24 Oct 1997, Sonderforschungsbereich 375 Astroteilchenphysik, Technische Universität München: 3–5.Google Scholar
Moszkowski, SA. 1951. A rapid method of calculating log (ft) values for ß-transitions. Physical Review 82:3537.CrossRefGoogle Scholar
Negret, A, Adachi, T, Barrett, BR, Bäumer, C, van den Berg, AM, Berg, GPA, von Brentano, P, Frekers, D, De Frenne, D, Fujita, H, Fujita, K, Fujita, Y, Grewe, EW, Haefner, P, Harakeh, MN, Hatanaka, K, Heyde, K, Hunyadi, M, Jacobs, E, Kalmykov, Y, Korff, A, Nakanishi, K, Navrátil, P, von Neumann-Cosel, P, Popescu, L, Rakers, S, Richter, A, Ryezayeva, N, Sakemi, Y, Shevchenko, A, Shimbara, Y, Shimizu, Y, Tameshige, Y, Tamii, A, Uchida, M, Vary, J, Wörtche, HJ, Yosoi, M, Zamick, L. 2006. Gamow-Teller strength in the A = 14 multiplet: a challenge to the shell model. Physical Review Letters 97:062502.CrossRefGoogle ScholarPubMed
Norris, WD, Inghram, MG. 1946. Half-life determination of carbon (14) with a mass spectrometer and low absorption counter. Physical Review 70:772773.CrossRefGoogle Scholar
Nuclear Data Center, Brookhaven National Laboratory. 2018. Nuclear structure and decay data. Available at https://www.nndc.bnl.gov/nudat2/.Google Scholar
Olsson, IU, Karlen, I, Turnbull, AH, Prosser, NJD. 1962. A determination of the half-life of C14 with a proportional counter. Arkiv för Fysik 22(14):237255.Google Scholar
Reid, AF, Dunning, JR, Weinhouse, S, Grosse, AV. 1946. Half-life of C14. Physical Review 70:431.CrossRefGoogle Scholar
Reimer, PJ, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Roberts, ML, Southon, JR. 2007. A preliminary determination of the absolute 14C/12C ratio of OX-I. Radiocarbon 49(2):442445.10.1017/S0033822200042363CrossRefGoogle Scholar
Ruben, S, Kamen, MD. 1941. Long-lived radioactive carbon. Physical Review 59:349354.CrossRefGoogle Scholar
Singh, B, Rodriguez, JL, Wong, SSM, Tuli, JK. 1998. Review of Log ft values in ß decay. Nuclear Data Sheets 84:487563.CrossRefGoogle Scholar
Szabo, J, Carmi, I, Segal, D, Mintz, E. 1998. An attempt at absolute 14C dating. Radiocarbon 40(1):7783.CrossRefGoogle Scholar
Uhlenbeck, GE, Goudsmit, S. 1926. Spinning electrons and the structure of spectra. Nature 117:264265.CrossRefGoogle Scholar
Watt, DE, Ramsden, D, Wilson, HW. 1961. The half-life of carbon-14. International Journal of Applied Radiation and Isotopes 11:6874.10.1016/0020-708X(61)90133-8CrossRefGoogle ScholarPubMed