Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:24:31.918Z Has data issue: false hasContentIssue false

The Effect of Anthropogenic CO2 and 14C Sources on the Distribution of 14C in the Atmosphere

Published online by Cambridge University Press:  18 July 2016

Ingeborg Levin
Affiliation:
Institut für Umweltphysik, Universität Heidelberg, Federal Republic of Germany
K O Münnich
Affiliation:
Institut für Umweltphysik, Universität Heidelberg, Federal Republic of Germany
Wolfgang Weiss
Affiliation:
Institut für Umweltphysik, Universität Heidelberg, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

14C measurements on continuous weekly samples of atmospheric CO2 and hydrocarbons, collected in a rather densely populated area are presented. The deviation of the measured 14C data from the clean air level is primarily due to CO2 from the combustion of fossil fuels. This is confirmed by fossil fuel admixture estimates individually calculated with an atmospheric dispersion model. Up to 10 percent admixture is predicted by this model and observed from the 14C shift for weekly averages, particularly during the winter season. Natural CO2 admixture due to soil respiration, however, even in winter, is of the same order of magnitude, but much larger in the warm season: the considerable variations in CO2 concentration in summer are almost exclusively controlled by natural sources. Using tree leaf samples, we have been able to identify boiling water reactors (BWR) as weak sources of 14CO2. Atmospheric samples taken in the environment of the pressurized water reactors (PWR) Biblis show that the 14C release of these reactors is primarily in the form of hydrocarbon 14C. The source strength of the various power plants, calculated on the basis of our observations in their environment, ranges from 0.5 to 7Ci per year.

Type
Man-Made 14C Variations
Copyright
Copyright © The American Journal of Science 

References

Berdau, D, Münnich, K O, 1972, Bomben C-14 in der Atmosphäre, Jahresbericht 1972 des II: Physik Inst Univ Heidelberg, p 147148.Google Scholar
Bevington, P R, 1969, Data reduction and error analysis for the physical sciences: New York, McGraw-Hill Book Co, 336 p.Google Scholar
Wetterdienst, Deutscher, 1976-1979, Europäischer Wetterbericht, Amtsblatt des Deutschen Wetterdienstes: Verlag Deutscher Wetterdienst.Google Scholar
Dörr, Helmut and Münnich, K O, 1980, Carbon-14 and Carbon-13 in soil CO2 , in Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th, Proc: Radiocarbon, v 22, no. 3, p 909918.CrossRefGoogle Scholar
Esser, N, 1975, Messung der absoluten Konzentration und des 12C-Gehaltes von atmosphärischem CO2 : Thesis, Inst f Umweltphysik, Univ Heidelberg.Google Scholar
Klug, W, 1964, Meteorologische Einfluβgröβen in der Ausbreitungsrechnung: Staub Reinhaltung der Luft, v 24, p 396400.Google Scholar
Klug, W 1969, Ein Verfahren zur Bestimmung der Ausbreitungsbedingungen aus synoptischen Beobachtungen: Staub Reinhaltung der Luft, v 29, p 143147.Google Scholar
Kunz, C O, Mahoney, W E, and Miller, T W, 1974, C-14 gaseous effluents from pressurized water reactors: Health physics symposium on population exposures, Knoxville, Tennessee.Google Scholar
Kunz, C O, Mahoney, W E, and Miller, T W 1975, C-14 gaseous effluents from boiling water reactors: Am. Nuclear Soc ann mtg, New Orleans, Louisiana.Google Scholar
Levin, Ingeborg, 1978, Regionale Modellierung des atmosphärischen CO2 aufgrund von C-13 und C-14 Messungen: Thesis, Inst f Umweltphysik, Univ Heidelberg.Google Scholar
Münnich, K O, 1963, Der Kreislauf des Radiokohlenstoffs in der Natur: Naturw, v 6, p 211218.CrossRefGoogle Scholar
Riedel, H and Gesewsky, P, 1977, Zweiter Bericht über Messungen zur Emission von Kohlenstoff-14 mit der Abluft aus Kernkraftwerken mit Leichtwasserreaktor in der Bundesrepublik Deutschland: STH-Bericht 13/77.Google Scholar
Schoch, Hilla, Bruns, Michael, Münnich, K O, and Münnich, Marianne, 1980, A multicounter system for high precision carbon-14 measurements, in Stuiver, Minze and Kra, Renee, eds, Internatl radiocarbon conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 442447.CrossRefGoogle Scholar
Statistisches Landesamt Württemberg, Baden, 1976, Statistisches Taschenbuch: Stuttgart.Google Scholar
Voerel, J C and Marais, M, 1971, Pretoria radiocarbon dates I: Radiocarbon, v 13, p 378399.CrossRefGoogle Scholar
Vogel, J C and Uhlitzsch, I, 1975, Carbon-14 as an indicator of CO2 pollution in cities, in Isotope ratios as pollutant source and behavior indicators: Vienna, IAEA-SM-191/15, p 143152.Google Scholar