Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T07:43:52.622Z Has data issue: false hasContentIssue false

Dating of Biodeposits of Oxalates at the Arc De Berà in Tarragona, Spain

Published online by Cambridge University Press:  18 July 2016

J Girbal
Affiliation:
Botànica. Fac. Ciències, Universitat Autònoma de Barcelona. 08193 Bellaterra, Spain. Email: [email protected].
J L Prada
Affiliation:
ESCRBCC. Aiguablava 109-113, 08033 Barcelona, Spain
R Rocabayera
Affiliation:
Botànica. Fac. Ciències, Universitat Autònoma de Barcelona. 08193 Bellaterra, Spain. Email: [email protected].
M Argemí
Affiliation:
Balmes 67, 08225 Terrassa, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This research stems from an earlier study of the lichen covering with oxalate deposits at the Arc de Berà monument. The initial objective of dating these biodeposits opened up other questions concerning the structure of these deposits and how they were formed. Some dating results gave an absolute age greater than the monument itself, which posed various hypotheses on the possible ageing mechanisms.

Type
I. Our ‘Dry’ Environment: Above Sea Level
Copyright
Copyright © 2001 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Amorós, M, Dupré, X, Escarré, V, Prada, JL, Rocabayera, R, Valenciano, A. 1994. Degradation forms and weathering mechanisms in the Berà Arch (Tarragona, Spain) III International Symposium on the Conservation of Monuments in the Mediterranean Basin :673–79.Google Scholar
Argemi, M, Girbal, J, Prada, JL, Rocabayera, R. (In press). Biodeposits of oxalates on the Arc de Berà (Tarragona): their morphology, composition and dating. 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin. Sevilla, 2000.Google Scholar
Argemi, M, Girbal, J, Prada, JL, Rocabayera, R, Vilaseca, L. SAXUM. 1995 Estudi de l'estat de conservació i proposta de tractament de l'arc de Berà. Technical report.Google Scholar
Caner, EN, Seeley, NJ. 1979. Dissolution and precipitation of limestone. 3rd International Congress on Deterioration and Conservation of Stone. Venezia: 106–29.Google Scholar
Dupré, X. 1994. L'arc romà de Berà (Hispania Citeror) Barcelona Institut d'Estudis Catalans i CSIC: 321p.Google Scholar
Dutton, MV, Evans, CS. 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology 42: 881–95.Google Scholar
Füredi-Milhofer, H, Tunik, L, Filiponvic-Vincekovic, N, Skrtic, D, Bavic-Ivancic, V, Garti, N. 1995. Induction of crystallization of calcium oxalate dihydrate in micellar solutions of anionic surfactants. Scanning Microscopy 9(4):1061–9.Google Scholar
Gorgoni, C, Lazzarini, L, Salvadori, O. 1992. Minerogeochemical transformations induced by lichens in the biocalcarenite of the selinuntine monuments. 7th. International Congress on Deterioration and Conservation of Stone, Lisboa :531–9.Google Scholar
Gupta, SK, Polach, HA. 1985. Radiocarbon dating practices at AUN. Handbook. Canberra: Radiocarbon Laboratory-AUN.Google Scholar
Hedges, REM, Bronk Ramsey, C, van Klinken, GJ, Pettitt, PB, Nielsen-Marsh, C, Etchegoyen, A, Niello, J, Boschin, MT, Llamazares, AM. 1998. Radiocarbon 40(1):3544.Google Scholar
Livingstone, RA. 1992. Graphical methods for examining the effects of acid rain and sulfur dioxide on carbonate stone. 7th. International Congress on Deterioration and Conservation of Stone. Lisboa :315–86.Google Scholar
Mackereth, FJH, Heron, J, Talling, JF. 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association scientific publication 36: 3453.Google Scholar
Nimis, PL, Pinna, D, Salvadori, O. 1992. Lichene e conservazione dei monumenti. Bologna: CLUEB. 165 p.Google Scholar
Peñuelas, J. 1985. HCO3 as an exogenous carbon source for aquatic bryophytes Fontinalis antipyretica and Fissidens grandifrons. Journal of Experimental Botany 36(164):441–8.Google Scholar
Prada, JL. 1995. Caracterización de formas y procesos de alteración, observadas en piedra de construcción de edad miocénica del área monumental de Tarragona. Doctoral thesis. Facultad de Geologia, University of Barcelona.Google Scholar
Quaressima, R, Di Giuseppe, E. 1996. Analysis of oxalate films by means of HPLC. II International Symposium. The oxalate films in the conservation of works of art. Milan:391406.Google Scholar
Russ, J, Kaluarachchi, WD, Drummond, L, Edwards, HGM. 1999. The nature of whewellite-rich rock crust associated with pictographs in southwestern Texas. Studies in Conservation 44:91103.Google Scholar
Saiz-Jimenez, C. 1995. Deposition of anthropogenic compounds on monuments and their effect on airborne microorganisms. Aereobiologia 11:161175.Google Scholar
Seaward, MRD, Giacobini, C. 1989. Oxalate encrustation by the lichen Dirina massiliensis forma sorediata and its role in the deterioration of works of art. La pellicola ad ossalati origine e significato nella conservazione delle opere d'arte :215–19.Google Scholar
Watchman, AL. 1991. Age and composition of oxalaterich crust in the Northern Territory, Australia. Studies in Conservation 36:2431.Google Scholar
Wilson, MJ. 1995. Interactions between lichens and rocks; a review. Cryptogamic Botany 5:299305.Google Scholar