Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:38:24.821Z Has data issue: false hasContentIssue false

Dating Bones near the Limit of the Radiocarbon Dating Method: Study Case Mammoth from Niederweningen, ZH Switzerland

Published online by Cambridge University Press:  18 July 2016

Irka Hajdas*
Affiliation:
Ion Beam Physics, ETH, Zürich, Schafmattstrasse. 20, 8093 Zurich, Switzerland
Adam Michczyński
Affiliation:
Silesian University of Technology, Institute of Physics, Radiocarbon Laboratory, GADAM Centre of Excellence, Boleslawa Krzywoustego 2, 44-100 Gliwice, Poland
Georges Bonani
Affiliation:
Ion Beam Physics, ETH, Zürich, Schafmattstrasse. 20, 8093 Zurich, Switzerland
Lukas Wacker
Affiliation:
Ion Beam Physics, ETH, Zürich, Schafmattstrasse. 20, 8093 Zurich, Switzerland
Heinz Furrer
Affiliation:
Paläontologisches Institut und Museum der Universität Zürich, Karl Schmid-Strasse 4, 8006 Zurich, Switzerland
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Preparation of bone material for radiocarbon dating is still a subject of investigation. In the past, the most problematic ages appeared to be the very old bones, i.e. those with ages close to the limit of the dating method. Development of preparative methods requires sufficient amounts of bone material as well as the possibility of verification of the ages. In the peat section at Niederweningen, ZH Switzerland, numerous bones of mammoth and other animals were found in the late 19th century. The first accelerator mass spectrometry (AMS) radiocarbon ages of those bones from 1890/1891 excavations placed the age between 33,000 and 35,000 BP. The excavations in 2003/2004 provided additional material for 14C dating. An age of 45,870 ± 1080 BP was obtained on base (NaOH step) cleaned gelatin from mammoth bone, which was very close to the age of 45,430 ± 1020 BP obtained for the peat layer that buried the mammoths. The 14C age of gelatin cleaned using the ultrafiltration method obtained in this study, 45,720 ± 710 BP, is in a very good agreement with the previously obtained results. Moreover, the study shows that 3 pretreatment methods (base+Longin, Longin+ultrafiltration, and base+Longin+ultrafiltration) give ages consistent with each other and with the age of the peat section.

Type
How Good Are 14C Ages of Bones? Problems and Methods Applied
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Arslanov, KA, Svezhentsev, YS. 1993. An improved method for radiocarbon dating fossil bones. Radiocarbon 35(3):387–91.Google Scholar
Arslanov, KA, Cook, GT, Gulliksen, S, Harkness, DD, Kankainen, T, Scott, EM, Vartanyan, S, Zaitseva, GI. 1998. Consensus dating of mammoth remains from Wrangel Island. Radiocarbon 40(1):289–94.Google Scholar
Aubry, D, Braillard, L, Guelat, M, Stalder, L, Stahl Gretsch, L. 2005. Mensch und Umwelt. Archäologie der Schweiz 28:616.Google Scholar
Bonani, G, Beer, J, Hofmann, H, Synal, H-A, Suter, M, Wölfli, W, Pfleiderer, C, Junghans, C, Münnich, KO. 1987. Fractionation, precision and accuracy in 14C and 13C measurements. Nuclear Instruments and Methods in Physics Research B 29(1–2):8790.CrossRefGoogle Scholar
Brock, F, Ramsey, CB, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2): 187–92.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–7.Google Scholar
Drescher-Schneider, R, Jacquat, C, Schoch, W. 2007. Palaeobotanical investigations at the mammoth site of Niederweningen (Kanton Zurich), Switzerland. Quaternary International 164 65:113–29.Google Scholar
Furrer, H, Graf, HR, Mäder, A. 2007. The mammoth site of Niederweningen, Switzerland. Quaternary International 164 165:8597.Google Scholar
Guthrie, DR. 2004. Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island. Nature 429(6993):746–9.Google Scholar
Hajdas, I, Bonani, G, Thut, J, Leone, G, Pfenninger, R, Maden, C. 2004. A report on sample preparation at the ETH/PSI AMS facility in Zurich. Nuclear Instruments and Methods in Physics Research B 223 224:267–71.Google Scholar
Hajdas, I, Bonani, G, Furrer, H, Mäder, A, Schoch, W. 2007. Radiocarbon chronology of the mammoth site at Niederweningen, Switzerland: results from dating bones, teeth, wood, and peat. Quaternary International 164 165:98105.Google Scholar
Higham, TFG, Jacobi, RM, Bronk Ramsey, C. 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48(2):179–95.Google Scholar
Hünermann, KA. 1985. Eiszeit-Säugetiere aus dem Kanton Zürich. Vierteljahrsschrift der Naturforschenden Gesellschaft Zürich 130:229–50.Google Scholar
Kuzmin, YV, Orlova, LA. 2004. Radiocarbon chronology and environment of woolly mammoth (Mammuthus primigenius Blum.) in northern Asia: results and perspectives. Earth-Science Reviews 68(1–2):133–69.Google Scholar
Kuzmin, YV, Orlova, LA, Zolnikov, ID. 2003. Dynamics of the mammoth (Mammuthus primigenius) population in Northern Asia: radiocarbon evidence. Deinsea. Annual of the Natural History Museum 9:221–37.Google Scholar
Lang, A. 1892. Geschichte der Mammutfunde. Ein Stück Geschichte der Paläontologie, nebst einem Bericht über den schweizerischen Mammutfund in Niederweningen 1890/91. Neujahrsblatt hrsg. von Naturf. Ges. auf das Jahr 1892 XCIV:235.Google Scholar
Law, IA, Hedges, REM. 1989. A semi-automated bone pretreatment system and the pretreatment of older and contaminated samples. Radiocarbon 31(3):247–53.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.Google Scholar
Nelson, DE. 1991. A new method for carbon isotopic analysis of protein. Science 251(4993):552–4.Google Scholar
Piotrowska, N, Goslar, T. 2002. Preparation of bone samples in the Gliwice radiocarbon laboratory for AMS radiocarbon dating. Isotopes in Environmental and Health Studies 38(4):267–75.Google Scholar
Preusser, F, Degering, D. 2007. Luminescence dating of the Niederweningen mammoth site, Switzerland. Quaternary International 164–165:106–12.Google Scholar
Saliège, J-F, Person, A, Paris, F. 1995. Preservation of 13C/12C original ratio and 14C dating of the mineral fraction of human bones from Saharan tombs, Niger. Journal of Archaeological Science 22(2):301–12.Google Scholar
Schlüchter, C. 1988. Neue geologische Beobachtungen bei der Mammutfunstelle in Niederweningen (Kt. Zürich). Vierteljahrsschrift der Naturforschenden Gesellschaft Zürich 133:99108.Google Scholar
Schlüchter, C. 1994. Das Wehntal—Eine Schlüsselregion der Eiszeitforschung. In: 28. Jahrheft des Unterländer Museumvereins 1994/95. Oberweningen. p 424.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments & Methods in Physics Research B 259(1):713.Google Scholar
Tisnerat-Laborde, N, Valladas, H, Kaltnecker, E, Arnold, M. 2003. AMS radiocarbon dating of bones at LSCE. Radiocarbon 45(3):409–19.Google Scholar
Tütken, T, Furrer, H, Vennemann, TW. 2007. Stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: implications for the Late Pleistocene climate, environment, and diet. Quaternary International 164 65:139–50.Google Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687–95.Google Scholar
van Klinken, GJ, Hedges, REM. 1995. Experiments on collagen-humic interactions: speed of humic uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22(2):263–70.Google Scholar
van Klinken, GJ, Bowles, AD, Hedges, REM. 1994. Radiocarbon dating of peptides isolated from contaminated fossil bone-collagen by collagenase digestion and reversed-phase chromatography. Geochimica et Cosmochimica Acta 58(11):2543–51.Google Scholar