Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T15:52:17.031Z Has data issue: false hasContentIssue false

The Continental European Suess Effect

Published online by Cambridge University Press:  18 July 2016

Ingeborg Levin
Affiliation:
Institut für Umweltphysik, University of Heidelberg Im Neuenheimer Feld 366, D-6900 Heidelberg, FRG
Joachim Schuchard
Affiliation:
Institut für Umweltphysik, University of Heidelberg Im Neuenheimer Feld 366, D-6900 Heidelberg, FRG
Bernd Kromer
Affiliation:
Institut für Umweltphysik, University of Heidelberg Im Neuenheimer Feld 366, D-6900 Heidelberg, FRG
K O Münnich
Affiliation:
Institut für Umweltphysik, University of Heidelberg Im Neuenheimer Feld 366, D-6900 Heidelberg, FRG
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of 14C in atmospheric CO2 at four different sites in central Europe, Heidelberg, Westerland, Schauinsland and Jungfraujoch have enabled us to determine individual fossil-fuel contributions to atmospheric CO2 concentration. The data clearly show a decrease of fossil-fuel CO2 with distance from anthropogenic source regions. At Heidelberg during winter we observe 14C/12C ratios up to 10% lower than at the clean air mountain station Jungfraujoch in the Swiss Alps, corresponding to an anthropogenic CO2 contamination level of ca 10% at the Heidelberg site. The Schauinsland and Westerland winter fossil-fuel CO2 concentrations are only ca 1.5 and 2% of the mean concentration, respectively. Our results indicate a strong seasonality in the European fossil-fuel CO2 source with ca 50% lower CO2 emissions during summer if compared to winter fossil-fuel CO2 release. This effect may significantly contribute (by 1–2 ppm) to the observed annual cycle of atmospheric CO2 concentration in northern mid-latitudes.

Type
II. Carbon Cycle in the Environment
Copyright
Copyright © The American Journal of Science 

References

Bartholomäi, G and Kinzelbach, W, 1980, Das Abwärmekataster Oberrheingebiet: KfK-report no. 2869 UF, Kernforschungsanlage Karlsruhe, FRG.Google Scholar
Conway, TJ, Tans, P, Thoning, KW, de Money, EC and Waterman, LS (ms), 1987, Variations in the rate of increase of atmospheric carbon dioxide: Paper presented at the Global Atmospheric Chem symposium, Trent Univ, Peterborough, Ontario, Canada, Aug 23–29 1987.Google Scholar
Conway, TJ, Tans, P, Waterman, LS, Thoning, KW and Masarie, KA, 1988, Atmospheric carbon dioxide measurements in the remote troposphere: Tellus, v 40B, p 81115.Google Scholar
Cullis, CF and Hirschler, MM, 1980, Atmospheric sulfur: natural and man-made sources: Atmos Environ, v 14, p 12631278.Google Scholar
Dams, R and de Jonge, J, 1980, Chemical composition of Swiss aerosol from the Jungfraujoch: Atmos Environ, v 10, p 10791085.Google Scholar
Dörr, H (ms), 1984, Die Untersuchung des Gas- und Wasserhaushalts in der ungesättigten Bodenzone mithilfe von Kohlendioxid und Radon-222 Messungen: PhD dissert, Univ Heidelberg.Google Scholar
Dörr, H, Kromer, B, Levin, I, Münnich, KO and Volpp, H, 1983, CO2 and Radon-222 as tracers for atmospheric transport: Jour Geophys Research, v 88, no. C2, p 13091313.Google Scholar
Dörr, H and Münnich, KO, 1986, Annual variations of the 14C content of soil CO2 , in Stuiver, M and Kra, RS, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, v 28, no. 2A, p 338345.Google Scholar
Dörr, H and Münnich, KO, 1987, Annual variation in soil respiration in selected areas of the temperate zone: Tellus, v 39B, no. 1–2, p 114121.CrossRefGoogle Scholar
Dörr, H and Münnich, KO, 1989, 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone: Tellus, in press.CrossRefGoogle Scholar
Levin, I, 1987, Atmospheric CO2 in continental Europe – an alternative approach to clean air CO2 data: Tellus, v 39B, no. 1–2, p 2128.Google Scholar
Levin, I, Kromer, B, Barabas, M and Münnich, KO, 1988, Environmental distribution and long-term dispersion of reactor 14CO2 around two German nuclear power plants: Health Physics, v 54, no. 2, p 149156.Google Scholar
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, D, Vogel, JC and Münnich, KO, 1985, 25 years of tropospheric 14C observations in central Europe: Radiocarbon, v 27, no. 1, p 119.Google Scholar
Levin, I, Kromer, B, Wagenbach, D and Münnich, KO, 1987, Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica: Tellus, v 39B, no. 1–2, p 8995.Google Scholar
Levin, I, Münnich, KO and Weiss, W, 1980, The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere, in Stuiver, M and Kra, RS, eds, Internatl 14C conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 379391.Google Scholar
Revelle, R and Suess, HE, 1957, Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades: Tellus, v 9, p 1827.Google Scholar
Rotty, RM, 1987, Estimates of seasonal variation in fossil fuel CO2 emissions: Tellus, v 39B, no. 1–2, p 184202.CrossRefGoogle Scholar
Schoch, H, Bruns, M, Münnich, KO and Münnich, M, 1980, A multi-counter system for high precision carbon-14 measurements; in Stuiver, M and Kra, RS, eds, Internatl 14C conf, 10th, Proc: Radiocarbon, v 22, no. 2, p 442447.Google Scholar
Stuiver, M and Polach, HA, 1977, Discussion: Reporting of 14C data: Radiocarbon, v 19, no. 3, p 355363.Google Scholar
Suess, HE, 1955, Radiocarbon concentration in modern wood: Science, v 122, p 415417.Google Scholar
Tans, PP (ms), 1978, Carbon 13 and carbon 14 in trees and the atmospheric CO2 increase: PhD dissert, Univ Groningen, The Netherlands.Google Scholar
UBA, 1982–1988, Monatsberichte aus dem Meßnetz: Umweltbundesamt, Berlin.Google Scholar
Volpp, J (ms), 1984, Untersuchungen des großraumigen atmosphärischen Transports in Mitteleuropa mit Hilfe von 222Radon: PhD dissert, Univ Heidelberg.Google Scholar
Zumbrunn, R, Friedli, HJ, Neftel, A and Rauber, D, 1983, CO2 measurements with an infrared laser spectrometer on flask samples collected at Jungfraujoch High-Altitude Research station (3500 meter asl) and with light aircraft up to 8000 meters over Switzerland: Jour Geophys Research, v 88, no. C11, p 68536857.Google Scholar