Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T22:13:18.873Z Has data issue: false hasContentIssue false

Comparison of U-Series and Radiocarbon Dates of Speleothems

Published online by Cambridge University Press:  18 July 2016

Tomasz Goslar
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland
Helena Hercman
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice, Poland. Email: [email protected]
Anna Pazdur
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The paper presents a comparison of U-series and radiocarbon dates of speleothems collected in several caves in central and southern Europe and southeast Africa. Despite a large spread of dates, mainly due to contamination with younger carbon, the group of corresponding 14C and 230Th/U ages of speleothem samples seems to be coherent with the previous suggestion of large deviation between the 14C and the absolute time scale between 35 and 45 ka BP. This agrees with the result of frequency analysis of published 14C and 230Th/U ages of speleothem.

Type
Comparison Records
Copyright
Copyright © 2000 The Arizona Board of Regents on behalf of the University of Arizona 

References

Atkinson, TC, Lawson, TJ, Smart, PL, Harmon, RS, Hess, JW. 1986. New data on speleothem deposition and palaeoclimate in Britain over the last forty thousand years. Journal of Quaternary Science 1:6772.Google Scholar
Bakalowicz, M, Sorriaux, P, Ford, DC. 1984. Quaternary glacial events in the Pyrenees from U-series dating of speleothems in the Niaux-Lombrives-Sabart caves, Ariege, France. Norsk Geografisk Tidsskrift 38:193–7.CrossRefGoogle Scholar
Bard, E. 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta 62:2025–38.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.Google Scholar
Bellman, RE, Dreyfus, SE. 1962. Applied dynamic programming. Princeton University Press, Princeton, New Jersey.CrossRefGoogle ScholarPubMed
Duliński, M. 1988. Sklad izotopowy tlenu i wodoru w naciekach jaskiniowych datowanych metodą 230Th/234U jako obraz zmian paleoklimatycznych na obszarach kontynentalnych (in Polish). , MIFiTJ AGH, Kraków.Google Scholar
Ford, DC, Gascoyne, M, Beck, JS. 1983. Speleothem dates and Pleistocene Chronology in the Peak District of Derbyshire. Transactions of the British Cave Research Association 10(2):103–15.Google Scholar
Gascoyne, M, Schwarcz, HP, Ford, DC. 1983. Uranium-Series ages of Speleothem from Northwest England: Correlation with Quaternary Climate. Philosophical Transactions of the Royal Society, London B 301:143–64.Google Scholar
Genty, D, Massault, M. 1997. Bomb 14C recorded in laminated speleothems: calculation of dead carbon proportion. Radiocarbon 39(1):3348.CrossRefGoogle Scholar
Geyh, MA, Hennig, GJ. 1986. Multiple Dating of a Long Flowstone Profile. Radiocarbon 28(2A):503–9.CrossRefGoogle Scholar
Geyh, MA, Schlüchter, C. 1998. Calibration of the 14C time scale beyond 22,000 BP Radiocarbon 40(1):475–82.Google Scholar
Glazek, J. 1986. Wyniki datowań nacieków jaskiniowych z terenu Polski metodą230Th/234U. Zeszyty Naukowe Politechniki Śląskiej, Geochronometria 2:5565.Google Scholar
Goede, A, Vogel, JC. 1991. Trace element variations and dating of a Late Pleistocene Tasmanian Speleothem. Palaeogeography, Palaeoclimatology, Palaeoecology 88:121–31.Google Scholar
Goslar, T. 1993. Seasonal component changes found in the youngest part of the Lake Gościąż laminated sediment. Polish Botanical Studies, Guidebook Series 8:189202 (in Polish with English summary).Google Scholar
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, MF, Ralska-Jasiewiczowa, M, Różański, K, Tisnerat, N, Walanus, A, Wicik, B, Więckowski, K. 1995. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377:414–7.CrossRefGoogle Scholar
Goslar, T, Wohlfarth, B, Björck, S, Possnert, G, Björck, J. 1999. Variations of atmospheric 14C concentrations over the Alleröd-Younger Dryas transition. Climate Dynamics 15:2942.CrossRefGoogle Scholar
Hennig, GJ, Grün, R, Brunnacker, K. 1983. Speleothems, travertines and paleoclimates. Quaternary Research 20:129.CrossRefGoogle Scholar
Hercman, H. 1991. Rekonstrukcja elementów środowiska geologicznego Tatr Zachodnich na podstawie datowania izotopowego nacieków jaskiniowych. Zeszyty Naukowe Politechniki Śląskiej, Geochronometria 8:1139.Google Scholar
Hercman, H, Pazdur, A, Pazdur, MF, Mitter, P. 1994. Datowanie izotopowe nacieków z wybranych jaskiń Slowackiego Krasu. Zeszyty Naukowe Politechniki Śląskiej, Geochronometria 10:8196.Google Scholar
Hercman, H, Lauritzen, SE, Glazek, J. 1995. Uranium-Series Dating of Speleothems from Niedzwiedzia and Radochowska Caves, Sudetes (Poland). Theoretical and Applied Karstology 8:3748.Google Scholar
Hercman, H, Bella, P, Glazek, J, Gradziński, M, Lauritzen, SE, Lovlie, R. 1997. Uranium-Series dating of Speleothems from Demanova Ice Cave: a Step to Age Estimation of the Demanova Cave System (the Nizke Tatry Mts., Slovakia). Annales Societalis Geologorum Poloniae 67:439–50.Google Scholar
Hercman, H, Lauritzen, SE, Glazek, J, Vit, J. 1997. Uranium-Series dating of Speleothems from Amaterska and Holstejnska Caves, Moravian Karst, Czech Republic. Proceedings of the 12th International Congress of Speleology 1:45–7.Google Scholar
Hercman, H, Nowicki, T, Lauritzen, SE. 1998. Rozwój systemu jaskiniowego Szczeliny Chocholowskiej (Tatry Zachodnie) w świetle datowań nacieków metodą uranowo-torową. Studia Geologica Polonica 113:85103.Google Scholar
Holmgren, K, Lauritzen, SE, Possnert, G. 1994. 230Th/234U dating of a Late Pleistocene stalagmite in Lobatse II Cave, Botswana. Quaternary Science Reviews 13:111–9.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC, Alley, R, Sigman, DM. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.Google Scholar
Ivanovich, M, Harmon, RS. 1992. Uranium Series Disequilibrium: Application to Environmental Problems. Oxford: 571.Google Scholar
Kitagawa, H, van der Plicht, J. 1998. Atmospheric radiocarbon calibration to 45,000 yr B.P.: late glacial fluctuations and cosmogenic isotope production. Science 279:1187–90.Google Scholar
Laj, C, Mazaud, A, Duplessy, JC. 1996. Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50 kyr. Geophysical Research Letters 23:2045–8.CrossRefGoogle Scholar
Maire, R, Quinif, Y. 1987. Chronostratigraphie et evolution sedimentaire en milieu Alpin dans la Galerie Aranzadi (Gouffre de la Pierre Saint Martin, Pyrenees, France). Annales Societe Geolique de Belgique, 110.Google Scholar
Mazaud, A, Laj, C, Bard, E, Arnold, M, Tric, E. 1991. Geomagnetic field control of 14C production over the last 80 ky: implications for the radiocarbon time-scale. Geophysical Research Letters 18:1885–8.Google Scholar
Pazdur, A, Hercman, H, Górny, A, Olszewski, M. 1994. Wstępne wyniki badań nad chronologią powstawania nacieków w jaskiniach Wyżyny Krakowsko-Wieluńskiej. Zeszyty Naukowe Politechniki Śląskiej, Geochronometria 10:6179.Google Scholar
Rowe, PJ, Atkinson, TC, Jenkinson, RDS. 1989. Uranium-Series Dating of Cave Deposits at Creswell Crags Gorge, England. Cave Science 16:317.Google Scholar
Srdoč, D, Slipcevic, A, Paninic, J, Obelić, B, Breyer, B. 1973. Rudjer Boskovic Institute radiocarbon measurements II. Radiocarbon 15(2):435–41.Google Scholar
Srdoč, D, Slipcevic, A, Planinic, J. 1975. Rudjer Boskovic Institute radiocarbon measurements III. Radiocarbon 17(1):149–55.Google Scholar
Srdoč, D, Slipcevic, A, Obelić, B, Horvatinčić, N. 1977. Rudjer Boskovic Institute radiocarbon measurements IV. Radiocarbon 19(3):465–75.Google Scholar
Srdoč, D, Slipcevic, A, Obelić, B, Horvatinčić, N. 1979. Rudjer Boskovic Institute radiocarbon measurements V. Radiocarbon 21(1):131–7.Google Scholar
Srdoč, D, Slipcevic, A, Obelić, B, Horvatinčić, N. 1981. Rudjer Boskovic Institute radiocarbon measurements. VI. Radiocarbon 23(3):410–21.Google Scholar
Srdoč, D, Horvatinčić, N, Obelić, B. 1982. Rudjer Boskovic Institute radiocarbon measurements VII. Radiocarbon 24(3):352–71.Google Scholar
Srdoč, D, Obelić, B, Horvatinčić, N, Krajcar, I. 1984. Rudjer Boskovic Institute radiocarbon measurements VIII. Radiocarbon 26(3):449–60.Google Scholar
Srdoč, D, Obelić, B, Horvatinčić, N, Bronič, IK. 1989. Rudjer Boskovic Institute radiocarbon measurements XI. Radiocarbon 31(1):8598.CrossRefGoogle Scholar
Srdoč, D, Horvatinčić, N, Bronić, IK, Obelić, B. 1992. Rudjer Boskovic Institute radiocarbon measurements XII. Radiocarbon 34(1):155–75.Google Scholar
Stuiver, M, Braziunas, T. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3:289305.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Warren Beck, J, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 Radiocarbon age calibration, 24,000-0 cal BP Radiocarbon 40(3):1041–83.Google Scholar
Sutcliffe, AJ, Harmon, RS, Ivanovich, M, Rae, A, Hess, JW. 1985. Wolverine in Northern England at About 83,000 yr B.P.: Faunal Evidence for Climatic Change during Isotope Stage 5. Quaternary Research 24:7386.Google Scholar
Tric, E, Valet, JP, Tucholka, P, Paterne, M, Labeyrie, L, Guichard, F, Tauxe, L, Fontugne, M. 1992. Paleointensity of the Geomagnetic field during the last 80,000 years. Journal of Geophysical Research B97:9337–51.Google Scholar
Vogel, J. 1983. 14C variations during the Upper Pleistocene. Radiocarbon 25(2):213–8.Google Scholar
Vogel, JC, Kronfeld, J. 1997. Calibration of radiocarbon dates for the Late Pleistocene using U-Th dates on stalagmites. Radiocarbon 39(1):2732.Google Scholar