Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T19:25:08.737Z Has data issue: false hasContentIssue false

COMPARING DIRECT CARBONATE AND STANDARD GRAPHITE 14C DETERMINATIONS OF BIOGENIC CARBONATES

Published online by Cambridge University Press:  19 January 2021

Jordon Bright*
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ86011, USA
Chris Ebert
Affiliation:
Center for Ecosystem Sciences and Society, and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
Matthew A Kosnik
Affiliation:
Department of Biological Sciences, Macquarie University, New South Wales2109, Australia
John R Southon
Affiliation:
Keck Carbon Cycle AMS Laboratory, Department of Earth System Science, University of California at Irvine, Irvine, CA92697, USA
Katherine Whitacre
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ86011, USA
Paolo G Albano
Affiliation:
Department of Paleontology, University of Vienna, Althanstrasse 14, Vienna, Austria
Carola Flores
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Ossandón 877, C.P. 1781681, Coquimbo, Chile Departmento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Av. Larrondo 1281, Coquimbo, Chile
Thomas K Frazer
Affiliation:
School of Natural Resources and Environment, University of Florida, Gainesville, FL32611, USA
Quan Hua
Affiliation:
Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW2232, Australia
Michal Kowalewski
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
Julieta C Martinelli
Affiliation:
School of Fishery and Aquatic Sciences, University of Washington, Seattle, WA98105, USA
David Oakley
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, PA16802, USA
Wesley G Parker
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, OH45221, USA
Michael Retelle
Affiliation:
Department of Geology, Bates University, Lewiston, ME04240, USA
Matias do Nascimento Ritter
Affiliation:
Centro de Estudos Costeiros, Limnológicos e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, 95625-00, Rio Grande do Sul, Brazil
Marcelo M Rivadeneira
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Ossandón 877, C.P. 1781681, Coquimbo, Chile Departmento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Av. Larrondo 1281, Coquimbo, Chile Departmento de Biología, Universidad de la Serena, Av. Raul Bitrán 1305, La Serena, Chile
Daniele Scarponi
Affiliation:
Department of Biological, Geological and Environmental Sciences, University of Bologna, Piazza di Porta San Donato, I-40126Bologna, Italy
Yurena Yanes
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, OH45221, USA
Martin Zuschin
Affiliation:
Department of Paleontology, University of Vienna, Althanstrasse 14, Vienna, Austria
Darrell S Kaufman
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ86011, USA
*
*Corresponding author. Email: [email protected].

Abstract

The direct carbonate procedure for accelerator mass spectrometry radiocarbon (AMS 14C) dating of submilligram samples of biogenic carbonate without graphitization is becoming widely used in a variety of studies. We compare the results of 153 paired direct carbonate and standard graphite 14C determinations on single specimens of an assortment of biogenic carbonates. A reduced major axis regression shows a strong relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m = 0.996; 95% CI [0.991–1.001]). An analysis of differences and a 95% confidence interval on pMC values reveals that there is no significant difference between direct carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct carbonate pMC is underestimated. The difference between the two methods is typically within 2 pMC, with 61% of direct carbonate pMC measurements being higher than their paired graphite counterpart. Of the 36 specimens that did yield significant differences, all but three missed the 95% significance threshold by 1.2 pMC or less. These results show that direct carbonate 14C dating of biogenic carbonates is a cost-effective and efficient complement to standard graphite 14C dating.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agassiz, L. 1841. Monographies d’Échinodermes vivans et fossiles. Échinites. Famille des Clypéasteroides. 2 (Seconde Monographie). Des Scutelles. Neuchâtel, Switzerland, i–iv, 1–151, pls 1–27.Google Scholar
Albano, PG, Hua, Q, Kaufman, DS, Tomašových, A, Zuschin, M, Agiadi, K. 2020. Radiocarbon dating supports bivalve-fish age coupling along a bathymetric gradient in high-resolution paleoenvironmental studies. Geology 48:589593. doi: 10.1130/G47210.1.CrossRefGoogle Scholar
Berger, R, Fergusson, GJ, Libby, WF. 1965. UCLA radiocarbon dates IV. Radiocarbon 7:336371. doi: 10.1017/S0033822200037310.CrossRefGoogle Scholar
Bonani, G, Balzer, R, Hofmann, H-J, Morenzoni, E, Nessi, M, Suter, M, Wölfli, W. 1984. Properties of milligram size samples prepared for AMS 14C dating at ETH. Nuclear Instruments and Methods in Physics Research B5:284288. doi: 10.1016/0168-583X(84)90528-7.CrossRefGoogle Scholar
Born, I. 1778. Index rerum naturalium Musei Cæsarei Vindobonensis. Pars I.ma. Testacea. Verzeichniß der natürlichen Seltenheiten des k. k. Naturalien Cabinets zu Wien. Erster Theil. Schalthiere. [1–40], 1–458, [1–82]. Kraus: Vindobonae.10.5962/bhl.title.11581CrossRefGoogle Scholar
Burleigh, R. 1983. Two radiocarbon dates for freshwater shells from Hierakonpolis: Archaeological and geological implications. Journal of Archaeological Science 10:361367. doi: 10.1016/0305-4403(83)90074-2.CrossRefGoogle Scholar
Bush, SL, Santos, GM, Xu, X, Southon, JR, Thiagarajan, N, Hines, SK, Adkins, JF. 2013. Simple, rapid, and cost effective: a screening method for 14C analysis of small carbonate samples. Radiocarbon 55:631640. doi: 10.1017/S0033822200057787.CrossRefGoogle Scholar
Conrad, TA. 1853. Descriptions of new fossils shells of the United States. Journal of the Academy of Natural Sciences of Philadelphia 2:273276.Google Scholar
Cuif, J-P, Dauphin, Y, Berthet, P, Jegoudez, J. 2004. Associated water and organic compounds in coral skeletons: Quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochemistry, Geophysics, Geosystems 5:Q11011. doi: 10.1029/2004GC000783.CrossRefGoogle Scholar
Cusack, M, Parkinson, D, Freer, A, Perez-Huerta, A, Fallick, AE, Curry, BB. 2008. Oxygen isotope composition of Modiolus modiolus aragonite in the context of biological and crystallographic control. Mineralogical Magazine 72:569577.10.1180/minmag.2008.072.2.569CrossRefGoogle Scholar
d’Orbigny, AD. 1834–1847. Voyage dans l’Amérique méridionale (le Brésil, la République orientale de l’Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivia, la République du Pérou), exécuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833, 5(3):Mollusques: i–xliii, 1–758, lám 1–85. París/Estrasburgo.CrossRefGoogle Scholar
d’Orbigny, AD. 1839–1842. Mollusques, Echinodermes, Foraminifères et Polypiers recueillis aux Iles Canaries par MM. Webb et Berthelot et décrits par Alcide d’Orbigny. Mollusques. 117 p., pl. 1–7, 7B (p. 1–24 [Aug. 1839], 25–48 [Sept. 1839], 49–72 [Oct. 1839], 73–104 [Jan. 1840], 105–136 [Mar. 1840],137–143 [Apr. 1840], 145–152 [Aug. 1842] pl. 1 [Jul. 1836], 2 [Dec. 1836], 3 [May 1842], 4–5 [June 1840], 7 [May 1842], 6,7B [Aug. 1842]. Béthune, Paris.Google Scholar
Deshayes, GP, Milne-Edwards, H. 1835. Histoire Naturelle des Animaux sans Vertèbres, présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s’y rapportent, par J.B.P.A. de Lamarck. Deuxième édition, Tome sixième. Histoire des Mollusques. iv + 600 pp. Paris: J. B. Baillière.Google Scholar
Dominguez, JG, Kosnik, MA, Allen, AP, Hua, Q, Jacob, DE, Kaufman, DS, Whitacre, K. 2016. Time-averaging and stratigraphic resolution in death assemblages and Holocene deposits: Sydney Harbour’s molluscan record. Palaios 31:564575. doi: 10.2110/palo.2015.087.CrossRefGoogle Scholar
Donahue, DJ, Linick, TW, Jull, AJ. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32:135142. doi: 10.1017/S00338222000040121.CrossRefGoogle Scholar
Dubois, P. 2014. Calcification in echinoderms. In: Jangoux M, Lawrence JM, editors. Echinoderm Studies 3. Rotterdam: Balkema. p. 109178.Google Scholar
Fenger, T, Surge, D, Schone, B, Milner, N. 2007. Sclerochronology and geochemical variation in limpet shells (Patella vulgate): a new archive to reconstruct coastal sea surface temperature. Geochemistry Geophysics Geosystems 8:Q07001. doi: 10.1029/2006GC001488.CrossRefGoogle Scholar
Flores, C, Gayo, EM, Salazar, D, Broitman, BR. 2018. δ18O of Fissurella maxima as a proxy for reconstructing Early Holocene sea surface temperatures in the coastal Atacama desert (25°S). Palaeogeography, Palaeoclimatology, Palaeoecology 499:2234. doi: 10.1016/j.palaeo.2018.03.031.CrossRefGoogle Scholar
Fremy, ME. 1855. Recherches chimiques sure les os. Annales de Chimie et de Physique 43:47107.Google Scholar
Gagnon, AR, Jones, GA. 1993. AMS-graphite target production methods at the Woods Hole Oceanographic Institution during 1986-1991. Radiocarbon 35:301310. doi: 10.1017/S0033822200064985.CrossRefGoogle Scholar
Galstoff, PS. 1964. The American Oyster Crassostrea virginica Gmelin. Fishery Bulletin of the U.S. Fish and Wildlife Service 64. 480 p.Google Scholar
Gmelin, JF. 1791. Vermes. In: Gmelin JF, editor. Caroli a Linnaei Systema Naturae per Regna Tria Naturae, Ed. 13. Tome 1(6). G.E. Beer, Lipsiae [Leipzig]. p. 3021–3910.Google Scholar
Goetz, AJ, Steinmetz, DR, Griesshaber, E, Zaefferer, S, Raabe, D, Kelm, K, Irsen, S, Sehrbrock, A, Schmahl, WW. 2011. Interdigitating biocalcite dendrites for a 3-D jigsaw structure in brachiopod shells. Acta Biomineralia 7:22372243. doi: 10.1016/j.actbio.2011.01.035.CrossRefGoogle ScholarPubMed
Grothe, PR, Cobb, KM, Bush, SL, Cheng, H, Santos, G.M, Southon, JR, Edwards, RL, Deocampo, DM, Sayani, HR. 2016. A comparison of U/Th and rapid-screen 14C dates from Line Island fossil corals. Geochemistry, Geophysics, Geosystems 17:833845. doi: 10.1002/2015GC005893.CrossRefGoogle Scholar
Hadden, CS, Loftis, KM, Cherkinsky, A. 2018. Carbon isotopes (δ13C and Δ14C) in shell carbonate, conchiolin, and soft tissues in eastern oyster (Crassostrea virginica). Radiocarbon 60:11251137. doi: 10.1017/RDC.2018.27.CrossRefGoogle Scholar
Hadden, CS, Loftis, KM, Cherinsky, A, Ritchison, BT, Lulewicz, IH, Thompson, VD. 2019. Radiocarbon in the marsh periwinkle (Littorina irrorata) conchiolin: applications for archaeology. Radiocarbon 61:1489-1500. doi: 10.1077/RDC.2019.53.CrossRefGoogle Scholar
Hammer, Ø, Harper, DAT, Ryan, PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1). 9 p. http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed version 4.03, June 30, 2020.Google Scholar
Haynes, CV, Jr, Mead, AR. 1987. Radiocarbon dating and paleoclimatic significance of subfossil Limicolaria in northwestern Sudan. Quaternary Research 28:8699. doi: 10.1016/0033-5894(87)90035-4.CrossRefGoogle Scholar
Hedges, REM, Wand, JO, White, NR. 1980. The production of C- beams for radiocarbon dating with accelerators. Nuclear Instruments and Methods 173:409421. doi: 10.1016/0029-554X(80)90801-0.CrossRefGoogle Scholar
Hua, Q, Lavchenko, VA, Kosnik, MA. 2019. Direct AMS 14C analysis of carbonate. Radiocarbon 61:14311440. doi: 10.1017/RDC.2019.24.CrossRefGoogle Scholar
Jones, CA. 2010. Mineralogy and seasonal growth of south Pacific mussel valves [MS thesis]. The University of Alabama, Tuscaloosa, Alabama. 73 p.Google Scholar
Keith, J, Stockwell, S, Ball, D, Remillard, K, Kaplan, D, Thannhauser, T, Sherwood, R. 1993. Comparative analysis of macromolecules in mollusc shells. Comparative Biochemistry and Physiology B 105:578–496. doi: 10.1016/0305-0491(93)90078-J.CrossRefGoogle ScholarPubMed
Keller, WA, Günter, JR, Erne, R. 1984. Preparation of elemental carbon for radiocarbon dating on the tandem accelerator. Nuclear Instruments and Methods in Physics Research B5:280283. doi: 10.1016/0168-583X(84)90527-5.CrossRefGoogle Scholar
Kennedy, WJ, Taylor, JD, Hall, A. 1969. Environmental and biological controls on bivalve shell mineralogy. Biological Review 44:499530.CrossRefGoogle ScholarPubMed
King, PP. 1832. Description of the Cirrhipeda, Conchifera and Mollusca, in a collection formed by the officers of H.M.S. Adventure and Beagle employed between the years 1826 and 1830 in surveying the southern coasts of South America, including the Straits of Magalhaens and the coast of Tierra del Fuego. Zoological Journal 5:332349.Google Scholar
Kirby, SM, Janecke, SU, Dorsey, RJ, Housen, BA, Langenheim, VE, McDougall, KA, Steely, AN. 2007. Pleistocene Brawley and Ocotillo Formations: evidence for initial strike-slip deformation along the San Felipe and San Jacinto Fault Zone, southern California. The Journal of Geology 115:43-62. doi: 10.1086/509248.CrossRefGoogle Scholar
Kosnik, MA, Hua, Q, Kaufman, DS, Kowalewski, M, Whitacre, K. 2017. Radiocarbon-calibrated amino acid racemization ages from Holocene sand dollars (Peronella peronii). Quaternary Geochronology 39:174188. doi: 10.1016/j.quageo.2016.12.001.CrossRefGoogle Scholar
Kowalewski, M, Casebolt, S, Hua, Q, Whitacre, KE, Kaufman, DS, Kosnik, MA. 2018. One fossil record, multiple time resolutions: Disparate time-averaging of echinoids and mollusks in a Holocene carbonate platform. Geology 46:5154. doi: 10.1130/G39789.1.CrossRefGoogle Scholar
Lamarck, J-BM de. 1819. Histoire naturelle des animaux sans vertèbres. Tome sixième, 1re partie. Paris: published by the author, vi + 343 p.Google Scholar
Leske, NG. 1778. Additamenta ad Jacobi Theodori Klein Naturalem Dispositionem Echinodermatum et Lucubratiunculam de Aculeis Echinorum Marinorum. 216 p.CrossRefGoogle Scholar
Linnaeus, C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata [10th revised edition], vol. 1: 824 p. Laurentius Salvius: Holmiae.CrossRefGoogle Scholar
Linnaeus, C. 1767. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1., Regnum Animale. 1 & 2. Holmiae, Laurentii Salvii. Holmiae [Stockholm], Laurentii Salvii. p. 1–532 [1766] p. 533–1327 [1767].Google Scholar
Longworth, BE, Robinson, LF, Roberts, ML, Beaupre, SR, Burke, A, Jenkins, WJ. 2013. Carbonate as a sputter target material for rapid 14C AMS. Nuclear Instruments and Methods in Physics Research B 294:328334. doi: 10.1016/j.nimb.2012.05.014.CrossRefGoogle Scholar
Masters, PM, Bada, JL. 1977. Racemization of isoleucine in fossil molluscs from Indian middens and interglacial terraces in southern California. Earth and Planetary Science Letters 37:173183. doi: 10.1016/0012-821X(77)90162-5.CrossRefGoogle Scholar
Middleton, R. 1983. A versatile high intensity negative ion source. Nuclear Instruments and Methods in Physics Research 214:139150. doi: 10.1016/0167-5087(83)90580-X.CrossRefGoogle Scholar
Mills, GL, Quinn, JG. 1979. Determination of organic carbon in marine sediments by persulfate oxidation. Chemical Geology 25:155162. doi: 10.1016/0009-2541(79)90090-1.CrossRefGoogle Scholar
Molina, DJI. 1782. Compendio de la historia geografica natural y civil del Reyno de Chile. Premiera parte. Madrid. 418 p.Google Scholar
New, E, Yanes, Y, Cameron, RAD, Miller, JH, Teixeira, D, Kaufman, DS. 2019. Aminochronology and time averaging of Quaternary land snail assemblages form colluvial deposits in the Madeira Archipelago, Portugal. Quaternary Research 92:483496. doi: 10.1017/qua.2019.1.CrossRefGoogle Scholar
Nielsen, JK, Helama, S, Rodland, D, Nielsen, JK. 2007. Eemian marine mollusks and barnacles from Ristinge Klint, Denmark: hydrodynamics and deficiency. Netherlands Journal of Geoscience 86:95115.CrossRefGoogle Scholar
Oakley, DOS, Kaufman, DS, Gardner, TW, Fisher, DM, VanderLeest, RA. 2017. Quaternary marine terrace chronology, North Canterbury, New Zealand, using amino acid racemization and infrared-stimulated luminescence. Quaternary Research 87:151167. doi: 10.1017/qua.2016.9.CrossRefGoogle Scholar
Olivi, G. 1792. Zoologia Adriatica, ossia catalogo ragionato degli animali del golfo e della lagune di Venezia. Bassano [G. Remondini e fl.]. [ix] + 334 + xxxii p., 9 pls.Google Scholar
Parker, WG, Yanes, Y, Hernández, EM, Hernández Marreno, JC, Paris, J, Surge, D. 2019. Scale of time-averaging in archaeological shell middens from the Canary Islands. The Holocene 114. doi: 10.1177/0959683619883020.Google Scholar
Paul, D, Mauldin, R. 2013. Implications for Late Holocene climate from stable carbon and oxygen isotopic variability in soil and land snail shells from archaeological site 41KM69 in Texas, USA. Quaternary International 308–309:242252. doi: 10.1016/j.quaint.2012.08.006.CrossRefGoogle Scholar
Quinn, GP, Keough, MJ. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK. 537 p.10.1017/CBO9780511806384CrossRefGoogle Scholar
Reeve, LA. 1850. Monograph of the genus Artemis. In: Reeve, LA, editor. Conchologia iconica. Vol. 6. London: L. Reeve & Co. p. 110.Google Scholar
Ritter, MN, Erthal, F, Kosnik, MA, Coimbra, JC, Kaufman, DS. 2017. Spatial variation in the temporal resolution of subtropical shallow-water molluscan death assemblages. Palaios 32:572583. doi: 10.2110/palo.2017.003.CrossRefGoogle Scholar
Roger, LM, George, AD, Shaw, J, Hart, RD, Roberts, M, Becker, T, McDonald, BJ, Evans, NJ. 2017. Geochemical and microstructural characterization of two species of cool-water bivalves (Fulvia tenuicostata and Soletellina biradiata) from Western Australia. Biogeosciences 14:17211737. doi: 10.5194/bg-14-1721-2017.CrossRefGoogle Scholar
Rozanski, K, Stichler, W, Gofiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34:506519. doi: 10.17/S0033822200063761.CrossRefGoogle Scholar
Say, T. 1818. Account of two new genera, and several new species, of fresh water and land snails. Journal of the Academy of Natural Sciences of Philadelphia 1:276284.Google Scholar
Smith, RJ. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140:476486. doi: 10.1002/ajpa.21090.CrossRefGoogle ScholarPubMed
Southon, J, Santos, GM. 2007. Life with MC-SNICS. Part II: further ion source development at the Keck Carbon Cycle AMS Facility. Nuclear Instruments and Methods in Physics Research B 259:8893. doi: 10.1016/j.nimb.2007.01.147.CrossRefGoogle Scholar
Sowerby, GB, I. 1824. Descriptions, accompanied by figures, of several Helices, discovered by T. E. Bowdich, Esq. at Porto Santo. Zoological Journal 1(March):5658.Google Scholar
Sowerby, GB, I, Sowerby, GB, II. 1832–1841. The conchological illustrations or, Coloured figures of all the hitherto unfigured recent shells. London: privately published.CrossRefGoogle Scholar
Stuvier, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355363. doi: 10.1017/S0033822200003672.CrossRefGoogle Scholar
Tschudin, P. 2001. Shell morphology, shell texture and species discrimination of Caribbean Tucetona (Bivalvia, Gylcymeridae). Journal of Paleontology 75:658679.CrossRefGoogle Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research 223:289293.CrossRefGoogle Scholar
Yanes, Y, Al-Qattan, NM, Rech, JA, Pigati, JS, Dodd, JP, Nedila, JC. 2019. Overview of the oxygen isotope systematics of land snails from North America. Quaternary Research 91:329344. doi: 10.1017/qua.2018.79.CrossRefGoogle Scholar
Zhang, C, Zhang, R. 2006. Matrix proteins in the outer shells of molluscs. Marine Biotechnology 8:572586. doi: 10.1007/s10126-005-6029-6.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bright et al. supplementary material

Bright et al. supplementary material

Download Bright et al. supplementary material(File)
File 57 KB