Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:32:18.552Z Has data issue: false hasContentIssue false

Combination of Numerical Dating Techniques Using 10Be in Rock Boulders and 14C of Resilient Soil Organic Matter for Reconstructing the Chronology of Glacial and Periglacial Processes in a High Alpine Catchment during the Late Pleistocene and Early Holocene

Published online by Cambridge University Press:  18 July 2016

Filippo Favilli
Affiliation:
Department of Geography, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Markus Egli*
Affiliation:
Department of Geography, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Dagmar Brandova
Affiliation:
Department of Geography, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Susan Ivy-Ochs
Affiliation:
Department of Geography, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Institute of Particle Physics, ETH Zurich, CH-8093 Zurich, Switzerland
Peter W Kubik
Affiliation:
Paul Scherrer Institute, c/o Institute of Particle Physics, ETH Zurich, CH-8093 Zurich, Switzerland
Max Maisch
Affiliation:
Department of Geography, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
Paolo Cherubini
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
Wilfried Haeberli
Affiliation:
Department of Geography, University of Zurich-Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Glacier fluctuations and paleoclimatic oscillations during the Late Quaternary in Val di Rabbi (Trentino, northern Italy) were reconstructed using a combination of absolute dating techniques (14C and 10Be) and soil chemical characterization. Extraction and dating of the stable fraction of soil organic matter (SOM) gave valuable information about the minimum age of soil formation and contributed to the deciphering of geomorphic surface dynamics. The comparison of 10Be surface exposure dating (SED) of rock surfaces with the 14C ages of resilient (resistant to H2O2 oxidation) soil organic matter gave a fairly good agreement, but with some questionable aspects. It is concluded that, applied with adequate carefulness, dating of SOM with 14C might be a useful tool in reconstructing landscape history in high Alpine areas with siliceous parent material. The combination of 14C dating of SOM with SED with cosmogenic 10Be (on moraines and erratic boulders) indicated that deglaciation processes in Val di Rabbi were already ongoing by around 14,000 cal BP at an altitude of 2300 m asl and that glacier oscillations might have affected the higher part of the region until about 9000 cal BP. 10Be and 14C ages correlate well with the altitude of the sampling sites and with the established Lateglacial chronology.

Type
Radiocarbon, Archaeology, and Landscape Change
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alley, RB, Meese, DA, Shuman, CA. 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362(6420):527–9.CrossRefGoogle Scholar
Auer, I, Böhm, R, Potzmann, P, Ungersböck, M. 2003. Änderung der Frosthäufigkeit in Österreich. Extended Abstract of 6th Deutsche Klimatagung. 22–25 September 2003, Postdam, BRD.Google Scholar
Barett, LR, Schaetzl, RJ. 1992. An examination of podzolization near Lake Michigan using chronofunctions. Canadian Journal of Soil Science 72:527–41.Google Scholar
Baroni, C, Carton, A. 1990. Variazioni oloceniche della Vedretta della Lobbia (gruppo dell'Adamello, Alpi Centrali). Geografia Fisica e Dinamica Quaternaria 13:105–19.Google Scholar
Birkeland, PW, Shroba, RR, Burns, SF, Price, AB, Tonkin, PJ. 2003. Integrating soils and geomorphology in mountains—an example from the Front Range of Colorado. Geomorphology 55(1–4):329–44.Google Scholar
Briner, JP, Kaufman, DS, Manley, WF, Finkel, RC, Caffee, MW. 2005. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. GSA Bulletin 117(7–8):1108–20.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.Google Scholar
Clapperton, C. 1995. Fluctuations of local glaciers at the termination of the Pleistocene: 18–8 ka BP. Quaternary International 28:4150.Google Scholar
Cuypers, C, Grotenhuis, T, Nierop, KGJ, Franco, EM, de Jager, A, Rulkens, W. 2002. Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48(9):919–31.Google Scholar
Dunne, J, Elmore, D, Muzikar, P. 1999. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27(1–2):311.CrossRefGoogle Scholar
Egli, M, Mirabella, A, Fitze, P. 2001. Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss Alpine environments. Catena 45(1):1947.Google Scholar
Eusterhues, K, Rumpel, C, Kögel-Knabner, I. 2005. Stabilization of soil organic matter isolated via oxidative degradation. Organic Geochemistry 36(11):1567–75.Google Scholar
Favilli, F, Egli, M, Cherubini, P, Sartori, G, Delbos, E, Haeberli, W. 2008. Comparison of different methods of obtaining a resilient organic matter fraction in Alpine soils. Geoderma 145(3–4):355–69.Google Scholar
Filippi, ML, Arpenti, E, Heiri, O, Frisia, S, Angeli, N, van der Borg, K, Blockley, S. 2007. Lake Lavarone Lateglacial to present palaeoenvironmental changes: a unique multi-proxy record from Trentino, NE Italy. Geophysical Research Abstracts 9:06639.Google Scholar
Gosse, JC, Phillips, FM. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20(14):1475–560.Google Scholar
Gosse, JC, Klein, J, Evenson, EB, Lawn, B, Middleton, R. 1995. Beryllium-10 dating of the duration and retreat of the last Pinedale glacial sequence. Science 268(5215):1329–33.Google Scholar
Heitz, A, Punchakunnel, P, Zoller, H. 1982. Zum Problem der 14C-Datierung im Veltlin und Oberengadin. Physische Geographie 1:91101.Google Scholar
Helfrich, M, Flessa, H, Mikutta, R, Dreves, A, Ludwig, B. 2007. Comparison of chemical fractionations methods for isolating stable soil organic carbon pools. European Journal of Soil Science 58(6):1316–29.Google Scholar
Hitz, C, Egli, M, Fitze, P. 2002. Determination of the sampling volumes for representative analysis of alpine soils. Zeitschrift für Pflanzenernährung und Bodenkunde 165(3):326–31.Google Scholar
Holzhauser, H. 1984. Zur Geschichte der Aletschgletscher und des Fieschergletschers [PhD dissertation]. University of Zürich.Google Scholar
Holzhauser, H, Magny, M, Zumbühl, HJ. 2005. Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15(6):789801.Google Scholar
Hormes, A, Müller, BU, Schlüchter, C. 2001. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene 11(3):255–65.CrossRefGoogle Scholar
IUSS Working Group WRB. 2006. World Reference Base for Soil Resources 2006. 2nd edition. World Soil Resources Reports No. 103, FAO (Food and Agriculture Organization of the United Nations), Rome.Google Scholar
Ivy-Ochs, S. 1996. The dating of rock surfaces using in situ produced 10Be, 26Al and 36Cl, with examples from Antarctica and the Swiss Alps [PhD dissertation]. ETH Zürich, No. 11763.Google Scholar
Ivy-Ochs, SD, Schäfer, J, Kubik, PW, Synal, HA, Schlüchter, C. 2004. Timing of deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helveticae 97(1):4755.Google Scholar
Ivy-Ochs, SD, Kerschner, H, Reuther, A, Maisch, M, Sailer, R, Schaefer, J, Kubik, PW, Synal, HA, Schlüchter, C. 2006a. The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. In: Siame, LL, Bourlès, DL, Brown, ET, editors. In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes. Geological Society of America Special Paper 415. p 4360.CrossRefGoogle Scholar
Ivy-Ochs, SD, Kerschner, H, Kubik, PW, Schlüchter, C. 2006b. Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. Journal of Quaternary Science 21(2):115–30.Google Scholar
Ivy-Ochs, SD, Kerschner, H, Schlüchter, C. 2007. Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: the Alpine perspective. Quaternary International 164–165:5363.Google Scholar
Ivy-Ochs, S, Kerschner, H, Reuther, A, Preusser, F, Heine, K, Maisch, M, Kubik, PW, Schlüchter, C. 2008. Chronology of the last glacial cycle in the northern European Alps. Journal of Quaternary Science 23(6–7):559–73.Google Scholar
Joerin, UE, Stocker, TF, Schlüchter, C. 2006. Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene 16(5):697704.CrossRefGoogle Scholar
Joerin, UE, Nicolussi, K, Fischer, A, Stocker, TF, Schlüchter, C. 2008. Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Science Reviews 27(3–4):337–50.Google Scholar
Johnsen, SJ, Clausen, HB, Dansgaard, W, Fuhrer, K, Gundestrup, N, Hammer, CU, Iversen, P, Jouzel, J, Stauffer, B, Steffensen, JP. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359(6393):311–3.Google Scholar
Johnsen, SJ, Dahl-Jensen, D, Gundestrup, N, Steffensen, JP, Clausen, HB, Miller, H, Masson-Delmotte, V, Sveinbjörnsdottir, AE, White, J. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16(4):299307.Google Scholar
Keller, O, Krayss, E. 1987. Die hochwürmeiszeitlichen Rückzugsphasen des Rhein-Vorlandgletschers und der erste alpine Eisrandkomplex im Spätglazial. Geographica Helvetica 42:169–78.Google Scholar
Keller, O, Krayss, E. 2005. Der Rhein-Linth-Gletscher im letzten Hochglazial: Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich (150):1932, 6985.Google Scholar
Kelly, MA, Kubik, PW, Von Blanckenburg, F, Schlüchter, C. 2004. Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide 10Be. Journal of Quaternary Science 19(5):431–41.CrossRefGoogle Scholar
Kerschner, H, Ivy-Ochs, S, Schlüchter, C. 1999. Paleoclimatic interpretation of the early late-glacial glacier in the Gschnitz valley, central Alps, Austria. Annals of Glaciology 28:135–40.Google Scholar
Kerschner, H, Ivy-Ochs, S. 2008. Palaeoclimate from glaciers: Examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change 60(1–2):5871.Google Scholar
Kohl, CP, Nishiizumi, K. 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochemica et Cosmochimica Acta 56(9):3583–7.CrossRefGoogle Scholar
Lal, D. 1991. Cosmic rays labeling of erosion surfaces: in-situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104(2–4):424–39.Google Scholar
Lundqvist, J. 1986. Stratigraphy of the central area of the Scandinavian glaciation. Quaternary Science Reviews 5:251–68.Google Scholar
Lundström, US, van Breemen, V, Bain, D. 2000. The podzolization process. A review. Geoderma 94(2–4):91107.Google Scholar
Maisch, M. 1981. Glazialmorphologische und gletschergeschichtliche Untersuchungen im Gebiet zwischen Landwasser—und Albulatal (Kt. Graubünden, Schweiz) [PhD dissertation]. University of Zürich: Physische Geographie, Volume 3.Google Scholar
Maisch, M. 1987. Zur Gletschergeschichte des alpinen Spätglazials: analyse und interpretation von Schneegrenzdaten. Geographica Helvetica 42:6371.Google Scholar
Maisch, M, Wipf, A, Denneler, B, Battaglia, J, Benz, C. 1999. Die Gletscher der Schweizer Alpen. Gletscherhochstand 1850, aktuelle Vergletscherung, Gletscherschwund-Szenarien. Schlussbericht NFP 31 Projekt, vdf-Hochschulverlag ETH Zürich.Google Scholar
Mangerud, J, Andersen, ST, Berglund, BE, Donner, JJ. 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3(3):109–27.CrossRefGoogle Scholar
McKeague, JA, Brydon, JE, Miles, NM. 1971. Differentiation of forms of extractable iron and aluminium in soils. Soil Science Society of America Proceedings 35:33–8.Google Scholar
Mikutta, R, Kleber, M, Torn, MS, Jahn, R. 2006. Stabilization of organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77(1):2556.CrossRefGoogle Scholar
Nishiizumi, K, Winterer, EL, Kohl, CP, Klein, J, Middleton, R, Lal, D, Arnold, JR. 1989. Cosmogenic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research 94(B12):907–15.Google Scholar
O'Brien, BJ, Stout, JD. 1978. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology and Biochemistry 10:309–17.Google Scholar
Ohlendorf, C. 1998. High Alpine lake sediments as chronicles for regional glacier and climate history in the Upper Engadine, southeastern Switzerland [PhD dissertation]. No. 12705, ETH Zürich.Google Scholar
Pedrotti, F, Orsomando, E, Francalancia, C, Cortini Pedrotti, C. 1974. Carta della vegetazione del Parco Nazionale dello Stelvio, scala 1:50.000. Dip. Di Botanica, Università di Camerino (Italy).Google Scholar
Penck, A, Brückner, E. 1901/09. Die Alpen im Eiszeitalter. Volumes 1–3. Leipzig: Tauchnitz.Google Scholar
Pigati, JS, Lifton, NA. 2004. Geomagnetic effects on time-integrated cosmogenic nuclide production with emphasis on in situ C-14 and Be-10. Earth and Planetary Science Letters 226(1–2):193205.Google Scholar
Plante, AF, Chenu, C, Balabane, M, Mariotti, A, Righi, D. 2004. Peroxide oxidation of clay-associated organic matter in a cultivation chronosequence. European Journal of Soil Science 55(3):471–8.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Righi, D, Meunier, A. 1995. Origin of clays by rock weathering and soil formation. In: Velde, B, editor. Origin and Mineralogy of Clays. Berlin: Springer-Verlag. p 43161.CrossRefGoogle Scholar
Schaefer, JM, Denton, GH, Barrell, DJA, Ivy-Ochs, S, Kubik, PW, Andersen, BG, Phillips, FM, Lowell, TV, Schlüchter, C. 2006. Near-synchronous interhemispheric termination of the last glacial maximum in mid-latitudes. Science 312(5779):1510–3.Google Scholar
Scharpenseel, HW, Becker-Heidmann, P. 1992. Twenty-five years of radiocarbon dating soils: paradigm of erring and learning. Radiocarbon 34(3):541–9.Google Scholar
Schaub, M, Büntgen, U, Kaiser, KF, Kromer, B, Talamo, S, Andersen, KK, Rasmussen, SO. 2008. Lateglacial environmental variability from Swiss tree rings. Quaternary Science Reviews 27(1–2):2941.CrossRefGoogle Scholar
Schlüchter, C. 1988. The deglaciation of the Swiss Alps: A paleoclimatic event with chronological problems. Bulletin de l'Association Francaise pour l'étude du Quaternaire (2/3):141–5.CrossRefGoogle Scholar
Schlüchter, C. 2004. The Swiss glacial record a schematic summary. In: Ehlers, J, Gibbard, PL, editors. Quaternary Glaciations—Extent and Chronology Part I: Europe. London: Elsevier. p 413–8.Google Scholar
Schoeneich, P. 1999. Le retrait glaciaire dans les vallées des Ormonts, de l'Hongrin et de l'Etivaz (Préalpes vaudoises). Thèse de la Faculté des lettres de l'Université de Lausanne, Travaux et recherche 14 (1/2).Google Scholar
Servizio Idrografico. 1959. Precipitazione medie mensili ed annue per il Trentino 1921–1950. Rome: Istituto Poligrafico dello Stato.Google Scholar
Soil Survey Staff. 2006. Keys to Soil Taxonomy. 10th edition. USDA-Natural Resources Conservation Service. Washington DC: USDA.Google Scholar
Starr, MR. 1991. Soil formation and fertility along a 5000 year chronosequence. In: Pulkkinen, E, editor. Environmental Geochemistry in Northern Europe. Geological Survey of Finland, Special Paper 9. p 99104.Google Scholar
Stone, JO. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105(B10):23,7539.Google Scholar
Studer, M. 2005. Gletschergeschichtliche Untersuchungen und geomorphologische Kartierung im Raum Maloja—Val Forno. Ein Beitrag zur regionalen Landschaftsgeschichte [Diplomarbeit]. Geographisches Institut Universität Zürich.Google Scholar
Theng, BGK, Tate, KR, Becker-Heidmann, P. 1992. Towards establishing the age, location and identity of the inert organic matter of a Spodosol. Zeitschrift für Pflanzenernährung und Bodenkunde 155(3):181–4.Google Scholar
Yokoyama, Y, Lambeck, K, De Deckker, P, Johnston, P, Fifield, LK. 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406(6797):713–6.Google Scholar
Zoller, H, Schindler, C, Röthlisberger, H. 1966. Postglaziale Gletschstände und Klimaschwankungen im Gotthardmassiv und Vorderrheingebiet. Verhandlungen der Naturforschungs Gesellschaft Basel 77:97164.Google Scholar