Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:03:10.109Z Has data issue: false hasContentIssue false

Collagen Extraction and Stable Isotope Analysis of Small Vertebrate Bones: A Comparative Approach

Published online by Cambridge University Press:  04 November 2016

S Cersoy*
Affiliation:
Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE, UMR 7209), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, CP55 ou 56, 55 rue Buffon, F-75005 Paris, France
A Zazzo
Affiliation:
Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE, UMR 7209), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, CP55 ou 56, 55 rue Buffon, F-75005 Paris, France
M Lebon
Affiliation:
Histoire Naturelle de l’Homme Préhistorique (HNHP, UMR 7194), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Université Perpignan Via Domitia, 17 Place du Trocadéro, F-75116 Paris, France
J Rofes
Affiliation:
Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE, UMR 7209), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, CP55 ou 56, 55 rue Buffon, F-75005 Paris, France
S Zirah
Affiliation:
Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, F-75005 Paris, France
*
*Corresponding author. Email: [email protected].

Abstract

Bone remains of small vertebrate fossils provide valuable information for paleoenvironmental and paleoclimatic reconstructions. However, direct radiocarbon dating of small vertebrates remains challenging as the extraction of sufficient good quality collagen is required. The efficiency of eight collagen extraction protocols was tested on seven samples, representative of different ages and burial environments, including both macro and small vertebrate taxa. First, the samples were prescreened using attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) to quantify collagen content in archaeological bones, revealing that one should be discarded for 14C dating. Then, the quantity of protein extracted (yield) and collagen integrity were checked using conventional elemental analysis. The results show that one protocol was not able to accurately extract collagen from the samples. A soft HCl-based protocol seems more appropriate for the pretreatment of archaeological small mammal bones, whereas a harsher protocol might be more efficient to extract a higher amount of collagen from large mammals as well as amphibian bones. The influence of the tested protocols on carbon and nitrogen isotope values was also investigated. The results showed that isotopic variability, when existing, is related to the interindividual differences rather than the different protocols.

Type
Chemical Pretreatment Approaches
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Alcover, JA, Rando, JC, García-Talavera, F, Hutterer, R, Michaux, J, Trias, M, Navarro, JF. 2009. A reappraisal of the stratigraphy of Cueva del Llano (Fuerteventura) and the chronology of the introduction of the house mouse (Mus musculus) into the Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 277(3–4):184190.Google Scholar
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17(4):431451.Google Scholar
Andrews, P, Cook, J. 1990. Owls, Caves and Fossils: Predation, Preservation and Accumulation of Small Mammal Bones in Caves, with an Analysis of the Pleistocene Cave Faunas from Westbury-Sub-Mendip, Somerset, UK. London: Natural History Museum Publications. 231 p.Google Scholar
Arslanov, KA, Svezhentsev, YS. 1993. An improved method for radiocarbon dating fossil bones. Radiocarbon 35(3):387391.Google Scholar
Beaumont, W, Beverly, R, Southon, J, Taylor, RE. 2010. Bone preparation at the KCCAMS laboratory. Nuclear Instruments and Methods in Physics Research B 268(7):906909.Google Scholar
Beavan-Athfield, NR, McFadgen, BG, Sparks, RJ. 2001. Environmental influences on dietary carbon and 14C ages in modern rats and other species. Radiocarbon 43(1):714.Google Scholar
Beck, L, Cuif, JP, Pichon, L, Vaubaillon, S, Dambricourt Malassé, A, Abel, RL. 2012. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA). Nuclear Instruments and Methods in Physics Research B 273:203207.Google Scholar
Bocherens, H, Drucker, D. 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13:4653.Google Scholar
Bocherens, H, Fizet, M, Mariotti, A, Lange-Badre, B, Vandermeersch, B, Borel, JP, Bellon, G. 1991. Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: application to the study of a past food web including Neanderthal man. Journal of Human Evolution 20(6):481492.Google Scholar
Bocherens, H, Drucker, D, Billiou, D, Moussa, I. 2005. Une nouvelle approche pour évaluer l'état de conservation de l’os et du collagène pour les mesures isotopiques (datation au radiocarbone, isotopes stables du carbone et de l’azote). L’Anthropologie 109(3):557567.Google Scholar
Bona, F, Laurenti, B, Delfino, M. 2009. Climatic fluctuations during the last glacial in the north-western Lombardian Prealps: the Upper Pleistocene faunal assemblages of the Caverna Generosa (Como, Italy). Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) 115(2):253267.Google Scholar
Britton, K, Müldner, G, Bell, M. 2008. Stable isotope evidence for salt-marsh grazing in the Bronze Age Severn Estuary, UK: implications for paleodietary analysis at coastal sites. Journal of Archaeological Science 35(8):21112118.Google Scholar
Brock, F, Bronk Ramsey, C, Higham, TFG. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.CrossRefGoogle Scholar
Brock, F, Higham, TFG, Bronk Ramsey, C. 2010. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4):855865.Google Scholar
Brock, F, Wood, R, Higham, TFG, Ditchfield, P, Bayliss, A, Bronk Ramsey, C. 2012. Reliability of nitrogen content (%N) and carbon: nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54(3–4):879886.CrossRefGoogle Scholar
Brock, F, Geoghegan, BT, Thomas, B, Jurkschat, K, Higham, TFG. 2013. Analysis of bone collagen extraction products for radiocarbon dating. Radiocarbon 55(3–4):445463.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.Google Scholar
Caputo, I, Lepretti, M, Scarabino, C, Esposito, C, Proto, A. 2012. An acetic acid-based extraction method to obtain high quality collagen from archaeological bone remains. Analytical Biochemistry 421(1):9296.Google Scholar
Chaimanee, Y, Jaeger, JJ, Suteethorn, V. 1993. Pleistocene small vertebrates from fissure-fillings in Thailand. Journal of Southeast Asian Earth Sciences 8(1):4548.Google Scholar
Cleland, TP, Voegele, K, Schweitzer, MH. 2012. Empirical evaluation of bone extraction protocols. PLoS ONE 7(2):e31443.Google Scholar
Commendador, A, Finney, BP. 2016. Holocene environmental change in the eastern Snake River Plain of Idaho, USA, as inferred from stable isotope analyses of small mammals. Quaternary Research 85(3):358370.Google Scholar
Cuenca-Bescós, G, Rofes, J, López-García, JM, Blain, HA, De Marfá, RJ, Galindo-Pellicena, MA, Bennásar-Serra, ML, Melero-Rubio, M, Arsuaga, JL, Bermúdez de Castro, JM, Carbonell, E. 2010. Biochronology of Spanish Quaternary small vertebrate faunas. Quaternary International 212(1):109–9.Google Scholar
Dal Sasso, G. 2015. Characterization of archaeological bones from the Al Khiday cemetery (Central Sudan): structure and microstructure of diagenetically altered bioapatite [PhD thesis]. Padova: University of Padova. 149 p.Google Scholar
Dauphin, Y, Denys, C. 1992. Differential diagenesis in fossil rodents – reliability of geochemical parameters in paleodiet reconstructions. Paleography, Paleoclimatology, Paleoecology 99:213223.Google Scholar
Dauphin, Y, Denis, A, Denys, C. 1999. Diagenese des micromammifères de trois niveaux du Plio-Pleistocene de Tighenif (Algérie) - comparaison avec des pelotes actuelles de régurgitation de rapaces. Kaupia 9:3551.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806809.Google Scholar
DeNiro, MJ, Schoeninger, MJ. 1983. Stable carbon and nitrogen isotope ratios of bone collagen: variations within individuals, between sexes, and within populations raised on monotonous diets. Journal of Archaeological Science 10(3):199203.Google Scholar
Farre, B, Massard, P, Nouet, J, Dauphin, Y. 2014. Preservation of rodent bones from El Harhoura 2 cave (Morocco, Neolithic – Middle Palaeolithic): microstructure, mineralogy, crystallinity and composition. Journal of African Earth Sciences 92:113.CrossRefGoogle Scholar
Finucane, B, Agurto, PM, Isbell, WH. 2006. Human and animal diet at Conchopata, Peru: stable isotope evidence for maize agriculture and animal management practices during the Middle Horizon. Journal of Archaeological Science 33(12):17661776.Google Scholar
Flynn, LJ, Wessels, W. 2013. Paleobiogeography and South Asian small mammals: Neogene latitudinal faunal variation. In: Wang X, Flynn LJ, Fortelius M, editors. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. p 445460.CrossRefGoogle Scholar
Francey, RJ, Allison, CE, Etheridge, DM, Trudinger, CM, Enting, IG, Leuenberger, M, Langenfelds, RL, Michel, E, Steele, LP. 1999. A 1000-year high precision record of δ13C in atmospheric CO2 . Tellus B 51(2):170193.Google Scholar
Fülöp, RH, Heinze, S, John, S, Rethemeyer, J. 2013. Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55(2–3):491500.Google Scholar
Heaton, TH, Grady, F. 2003. The Late Wisconsin vertebrate history of Prince of Wales Island, Southeast Alaska. In: Schubert BW, Mead JI, Graham RW, editors. Ice Age Cave Faunas of North America. Bloomington: Indiana University Press. p 1753.Google Scholar
Hüls, CM, Grootes, PM, Nadeau, M-J. 2009. Ultrafiltration: boon or bane? Radiocarbon 51(2):613625.Google Scholar
Jørkov, MLS, Heinemeier, J, Lynnerup, N. 2007. Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. Journal of Archaeological Science 34(11):18241829.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):13061316.Google Scholar
Kotsakis, T, Barisone, G. 2000. Paleobiogeografia dei micromammiferi cenozoici dell’Anatolia. Biogeographia 21:579592.Google Scholar
Lebon, M, Reiche, I, Gallet, X, Bellot-Gurlet, L, Zazzo, A. 2016. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58(1):131145.Google Scholar
Longin, R. 1970. Extraction du collagène des os fossiles pour leur datation par la méthode du carbone 14 [PhD dissertation]. Lyon: Université de Lyon. 70 p.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.Google Scholar
Martinkova, N, Barnett, R, Cucchi, T, Struchen, R, Pascal, M, Fischer, MC, Higham, TFG, Brace, S, Ho, SYW, Quéré, JP, O’Higgins, P, Excoffier, L, Heckel, G, Hoelzel, AR, Dobney, KM, Searle, JB. 2013. Divergent evolutionary processes associated with colonization of offshore islands. Molecular Ecology 22(20):52055220.Google Scholar
Minami, M, Yamazaki, K, Omori, T, Nakamura, T. 2013. Radiocarbon dating of VIRI bone samples using ultrafiltration. Nuclear Instruments and Methods in Physics Research B 294:240245.Google Scholar
Navarro, N, Lécuyer, C, Montuire, S, Langlois, C, Martineau, F. 2004. Oxygen isotope compositions of phosphate from arvicoline teeth and Quaternary climatic changes, Gigny, French Jura. Quaternary Research 62(2):172182.Google Scholar
Palkopoulou, E, Baca, M, Abramson, NI, Sablin, M, Socha, P, Nadachowski, A, Prost, S, Germonpré, M, Kosintsev, P, Smirnov, NG, Vartanyan, S, Ponomarev, D, Nyström, J, Nikolskiy, P, Jass, CN, Litvinov, YN, Kalthoff, DC, Grigoriev, S, Fadeeva, T, Douka, A, Higham, TF, Ersmark, E, Pitulko, V, Pavlova, E, Stewart, JR, Węgleński, P, Stankovic, A, Dalén, L. 2016. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings. Global Change Biology 22(5):17101721.Google Scholar
Pestle, WJ. 2010. Chemical, elemental, and isotopic effects of acid concentration and treatment duration on ancient bone collagen: an exploratory study. Journal of Archaeological Science 37(12):31243128.Google Scholar
Pestle, WJ, Brennan, V, Sierra, RL, Smith, EK, Vesper, BJ, Cordell, GA, Colvard, MD. 2015. Hand-held Raman spectroscopy as a pre-screening tool for archaeological bone. Journal of Archaeological Science 58:113120.Google Scholar
Rando, JC, Pieper, H, Alcover, JA. 2014. Radiocarbon evidence for the presence of mice on Madeira Island (North Atlantic) one millennium ago. Proceedings of the Royal Society B: Biological Sciences 281:20133126.Google Scholar
Rofes, J, Garcia-Ibaibarriaga, N, Aguirre, M, Martínez-García, B, Ortega, L, Zuluaga, MC, Bailon, S, Alonso-Olazabal, A, Castaños, J, Murelage, X. 2015. Combining small-vertebrate, marine and stable-isotope data to reconstruct past environments. Scientific Reports 5:14219.Google Scholar
Royer, A. 2016. How complex is the evolution of small mammal communities during the Late Glacial in southwest France? Quaternary International. doi: 10.1016/j.quaint.2015.12.065.Google Scholar
Schoeninger, MJ, Moore, KM, Murray, ML, Kingston, JD. 1989. Detection of bone preservation in archaeological and fossil samples. Applied Geochemistry 4(3):281292.Google Scholar
Sealy, J, Johnson, M, Richards, M, Nehlich, O. 2014. Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. Journal of Archaeological Science 47:6469.Google Scholar
Semal, P, Orban, R. 1995. Collagen extraction from recent and fossil bones: quantitative and qualitative aspects. Journal of Archaeological Science 22(4):463467.Google Scholar
Stafford, TW Jr. 2014. Chronology of the Kennewick Skeleton, Washington. In: Owsley DW, Jantz RL, editors. Kennewick Man, The Scientific Investigation of an Ancient American Skeleton. College Station: Texas A&M University Press. p 5889.Google Scholar
Stafford, TW Jr, Brendel, K, Duhamel, RC. 1988. Radiocarbon, 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochimica et Cosmochimica Acta 52(9):22572267.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415417.Google Scholar
Szpak, P. 2011. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science 38(12):33583372.Google Scholar
Tuross, N. 2012. Comparative decalcification methods, radiocarbon dates, and stable isotopes of the VIRI bones. Radiocarbon 54(3–4):837844.CrossRefGoogle Scholar
Tuross, N, Fogel, ML, Hare, PE. 1988. Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochimica et Cosmochimica Acta 52(4):929935.Google Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695.Google Scholar
Waters, MR, Stafford, TW, Kooyman, B, Hills, LV. 2015. Late Pleistocene horse and camel hunting at the southern margin of the ice-free corridor: reassessing the age of Wally’s Beach, Canada. Proceedings of the National Academy of Sciences of the USA 112(14):42634267.Google Scholar
Wilmshurst, JM, Anderson, AJ, Higham, TFG, Worthy, TH. 2008. Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proceedings of the National Academy of Sciences of the USA 105(22):76767680.Google Scholar