Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T20:33:01.708Z Has data issue: false hasContentIssue false

Chronology of the Danish Bronze Age Based on 14C Dating of Cremated Bone Remains

Published online by Cambridge University Press:  18 July 2016

Jesper Olsen*
Affiliation:
School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, 42 Fitzwilliam Street, Belfast BT9 6AX, United Kingdom.
Karen Margrethe Hornstrup
Affiliation:
Moesgaard Museum, Højbjerg DK-8270, Denmark.
Jan Heinemeier
Affiliation:
AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Aarhus DK-8000, Denmark.
Pia Bennike
Affiliation:
Saxo Institute, University of Copenhagen, Copenhagen DK-2300, Denmark.
Henrik Thrane
Affiliation:
Department of Prehistoric Archaeology, Moesgaard, Aarhus University, Højbjerg DK-8270, Denmark.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relative Bronze Age chronology for Scandinavia was established as early as 1885. It is traditionally divided into 6 periods (I–VI). Earlier attempts to make an absolute Bronze Age chronology for southern Scandinavia were derived from burials and settlements and were mainly based on radiocarbon-dated charcoal or carbonized cereals, often with undefined archaeological periods. Here, we present high-precision 14C dating on burials with well-defined associated archaeological periods in order to improve the absolute chronology of the Danish Bronze Age. Our results are in broad agreement with the traditional absolute chronology of the Danish Bronze Age. However, our results do indicate that the onset of period III likely occurred earlier than previously thought.

Type
Archaeology
Copyright
Copyright © The American Journal of Science 

References

Andersen, GJ, Heinemeier, J, Nielsen, HL, Rud, N, Thomsen, MS, Johnsen, S, Sveinbjörnsdóttir, ÁE, Hjartarson, A. 1989. AMS 14C dating on the Fossvogur sediments, Iceland. Radiocarbon 31(3):592600.Google Scholar
Aner, E, Kersten, K. 1978. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.Google Scholar
Aner, E, Kersten, K. 1981. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.Google Scholar
Aner, E, Kersten, K. 1984. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.Google Scholar
Aner, E, Kersten, K. 1986. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.Google Scholar
Aner, E, Kersten, K. 1995. Die Funde der älteren Bronzezeit des nordischen Kreises aus Dänemark, Schleswig-Holstein und Niedersachsen: København & Neumünster.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Christensen, K. 2006. Dendrochronological dating of oak coffins from the Bronze Age of Denmark and Schleswig. Acta Archaeologica 77:162246.Google Scholar
De Mulder, G, Van Strydonck, M, Boudin, M, Leclercq, W, Paridaens, N, Warmenbol, E. 2007. Re-evaluation of the Late Bronze Age and Early Iron Age chronology of the western Belgian urnfields based on 14C dating of cremated bones. Radiocarbon 49(2):499514.Google Scholar
De Mulder, G, Van Strydonck, M, Boudin, M. 2009. The impact of cremated bone dating on the archaeological chronology of the Low Countries. Radiocarbon 51(2):579600.Google Scholar
Fischer, A, Olsen, J, Richards, M, Heinemeier, J, Sveinbjörnsdóttir, ÁE, Bennike, P. 2007. Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. Journal of Archaeological Science 34(12):2125–50.CrossRefGoogle Scholar
Garvie-Lok, SJ, Varney, TL, Katzenberg, MA. 2004. Preparation of bone carbonate for stable isotope analysis: the effects of treatment time and acid concentration. Journal of Archaeological Science 31(6):763–76.Google Scholar
Håkansson, S. 1974. University of Lund radiocarbon dates VII. Radiocarbon 16(3):307–30.Google Scholar
Hassan, AA, Termine, JD, Haynes, CV. 1977. Mineralogical studies on bone apatite and their implications for radiocarbon dating. Radiocarbon 19(3):364–74.Google Scholar
Hedges, REM, Millard, AR. 1995. Bones and groundwater: towards the modelling of diagenetic processes. Journal of Archaeological Science 22(2):155–64.CrossRefGoogle Scholar
Hüls, CM, Nadeau, M-J, Grootes, PM, Erlenkeuser, H, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2):587–99.Google Scholar
Jensen, J. 1998 Manden i kisten. Hvad bronzealderens gravhøje gemte. Copenhagen.Google Scholar
Jørgensen, LB, Munksgaard, E, Nielsen, K-HS. 1984. Melhøj-fundet. En hidtil upåagtet parallel til Skrydstrupfundet. Aarbøger for Nordisk Oldkyndighed og Historie 1982. p 1957.Google Scholar
Lanting, JN, Brindlye, AL. 1998. Dating cremated bone: the dawn of a new era. Journal of Irish Archaeology 9:17.Google Scholar
Lanting, JN, Aerts-Bijma, A, van der Plicht, H. 2001. Dating of cremated bones. Radiocarbon 43(2):249–54.Google Scholar
Lanting, JN, van der Plicht, J. 2003. 14C-chronologie: bronstijd en vroege ijzertijd. Paleohistoria 43/44:117262.Google Scholar
Lee-Thorp, JA, Sealy, JC, van der Merwe, J. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16(6):585–99.Google Scholar
Montelius, M. 1885. Om tidsbestämning inom bronsåldern med sårskilt avseende på Skandinavien. Stockholm.Google Scholar
Montelius, M. 1986. Dating in the Bronze Age with Special Reference to Scandinavia [reprinted]. Stockholm: Almqvist & Wiksell. 148 p.Google Scholar
Munro, LE, Longstaffe, FJ, White, CD. 2007. Burning and boiling of modern deer bone: effects on crystallinity and oxygen isotope composition of bioapatite phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 249(1–2):90102.CrossRefGoogle Scholar
Olsen, J, Heinemeier, J, Bennike, P, Krause, C, Hornstrup, KM, Thrane, H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3):791800.Google Scholar
Olsen, J, Heinemeier, J, Lübcke, H, Lüth, F, Terberger, T. 2010. Dietary habits and freshwater reservoir effects in bones from a Neolithic NE German cemetery. Radiocarbon 52(2):635–44.Google Scholar
Randsborg, K. 1972. From Period III to Period IV. Chronological Studies of the Bronze Age in Southern Scandinavia and Northern Germany. Copenhagen: Publications of the National Museum.Google Scholar
Randsborg, K. 1996. The Nordic Bronze Age: chronological dimensions. Acta Archaeologica 67:6172.Google Scholar
Randsborg, K. 2006. Chronology. Acta Archaeologica 77:358.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Richards, MP, Hedges, REM. 1999. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. Journal of Archaeological Science 26(6):717–22.Google Scholar
Sandford, MK. 1993. Understanding the biogenic-diagenetic continuum: interpreting elemental concentrations of archaeological bone. In: Sandford, MK, editor. Investigations of Ancient Human Tissue. New York: Gordon and Breach Science. p 357.Google Scholar
Strömberg, M. 1974. Soziale Schichtungen in der älteren Bronzezeit Südschwedens. Die Kunde 25:8997.Google Scholar
Surovell, TA. 2000. Radiocarbon dating of bone apatite by step heating. Geoarchaeology 15:591608.Google Scholar
Tamers, MA, Pearson, FJ. 1965. Validity of radiocarbon dates on bone. Nature 208(5015):1053–5.Google Scholar
Thomsen, MS. 1990. AMS Spectrometry. Aarhus: Aarhus Universitet.Google Scholar
Thrane, H. 1964. The earliest bronze vessels in Denmark's Bronze Age. Acta Archaeologica 33:109–63.Google Scholar
Thrane, H. 2004. Fyns Yngre Broncealdergrave. Bind 1. Odense Bys Museer.Google Scholar
van Strydonck, M, Boudin, M, Hoefkens, M, de Mulder, G. 2005. 14C-dating of cremated bones, why does it work? Lunula 13:310.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553–68.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, de Mulder, G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2):578–86.Google Scholar
Vandkilde, H, Rahbek, U, Rasmussen, KL. 1996. Radiocarbon dating and the chronology of Bronze Age southern Scandinavia. Acta Archaeologica 67:183–98.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytical condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289–93.Google Scholar
Wright, LE, Schwarcz, HP. 1996. Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. Journal of Archaeological Science 23(6):933–44.Google Scholar