Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T22:18:54.376Z Has data issue: false hasContentIssue false

Change of Diet of the Greenland Vikings Determined from Stable Carbon Isotope Analysis and 14C Dating of Their Bones

Published online by Cambridge University Press:  18 July 2016

Jette Arneborg
Affiliation:
Department of Prehistory and the Middle Ages, The National Museum of Denmark, DK-1220 Copenhagen, Denmark
Jan Heinemeier
Affiliation:
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark
Niels Lynnerup
Affiliation:
Laboratory of Biological Anthropology, The Panum Institute, University of Copenhagen, DK-2000 Copenhagen, Denmark
Henrik L Nielsen
Affiliation:
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark
Niels Rud
Affiliation:
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark
Árný E Sveinbjörnsdóttir
Affiliation:
Science Institute, University of Iceland, IS-107 Reykjavik, Iceland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bone samples from the Greenland Viking colony provide us with a unique opportunity to test and use 14C dating of remains of humans who depended upon food of mixed marine and terrestrial origin. We investigated the skeletons of 27 Greenland Norse people excavated from churchyard burials from the late 10th to the middle 15th century. The stable carbon isotopic composition (δ13C) of the bone collagen reveals that the diet of the Greenland Norse changed dramatically from predominantly terrestrial food at the time of Eric the Red around AD 1000 to predominantly marine food toward the end of the settlement period around AD 1450. We find that it is possible to 14C-date these bones of mixed marine and terrestrial origin precisely when proper correction for the marine reservoir effect (the 14C age difference between terrestrial and marine organisms) is taken into account. From the dietary information obtained via the δ13C values of the bones We have calculated individual reservoir age corrections for the measured 14C ages of each skeleton. The reservoir age corrections were calibrated by comparing the 14C dates of 3 highly marine skeletons with the 14C dates of their terrestrial grave clothes. The calibrated ages of all 27 skeletons from different parts of the Norse settlement obtained by this method are found to be consistent with available historical and archaeological chronology. The evidence for a change in subsistence from terrestrial to marine food is an important clue to the old puzzle of the disappearance of the Greenland Norse, obtained here for the first time by measurements on the remains of the people themselves instead of by more indirect methods like kitchen-midden analysis.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Ambrose, SH, Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert, JB, Grupe, G, editors. Prehistoric Human Bone. Berlin: Springer-Verlag. p 1–37.Google Scholar
Arneborg, J. 1990. The Roman Church in Norse Greenland. Acta Archaeologica 61:142–50.Google Scholar
Arneborg, J. 1996. Burgunderhuer, baskere og døde nordboer i Herjolfsnæs, Grønland (Burgundian caps, Basques and dead Norsemen at Herjolfsnes, Greenland). English summary. Nationalmuseets Arbejdsmark 1996. Copenhagen: Nationalmuseet. p 7583.Google Scholar
Barlow, LK, Sadler, JP, Ogilvie, AEJ, Buckland, PC, Amorosi, T, Ingimundarson, JH, Skidmore, P, Dugmore, AJ, McGovern, TH. 1997. Interdisciplinary investigations of the end of the Norse Western Settlement in Greenland. The Holocene 7:489–99.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2): 171–7.CrossRefGoogle Scholar
Bröste, K, Fischer-Møller, K, Pedersen, PO. 1944. The mediaeval Norsemen at Gardar. Meddelelser om Grønland 89(3): 162.Google Scholar
Chisholm, BS. 1989. Variation in diet reconstructions based on stable carbon isotopic evidence. In: Price, TD, editor. The Chemistry of Prehistoric Human Bone. Cambridge: Cambridge University Press. p 1037.Google Scholar
Chisholm, BS, Nelson, DE, Schwarcz, HP. 1982. Stable carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216:1131–2.CrossRefGoogle ScholarPubMed
Chisholm, BS, Nelson, DE, Schwarcz, HP. 1983. Marine and terrestrial protein in prehistoric diets on the British Columbia coast. Current Anthropology 24:396–8.CrossRefGoogle Scholar
Dahl-Jensen, D, Mosegaard, K, Gundestrup, N, Clow, GD, Johnsen, SJ, Hansen, AW, Balling, N. 1998. Past temperatures directly from the Greenland ice sheet. Science 282:268–71.CrossRefGoogle ScholarPubMed
Fischer-Møller, K. 1942. The mediaeval Norse settlements in Greenland. Meddelelser om Grønland 89(2): 182.Google Scholar
Fricke, HC, O'Niel, JR, Lynnerup, N. 1995. Oxygen isotope composition of human tooth enamel from medieval Greenland: linking climate and society. Geology 23:869–72.2.3.CO;2>CrossRefGoogle Scholar
Grummesgaard-Nielsen, S. 1997. Thulekulturens grave. Grønland 5–7:198–227.Google Scholar
Gulliksen, S, Scott, M. 1995. Report of the TIRI workshop. Radiocarbon 37:820–1.Google Scholar
Hansen, FCC. 1924. Anthropologia medico-historica Groenlandiae antiquae. I. Herjolfsnes. Meddelelser om Grønland 67:291–547.Google Scholar
Hedges, REM, van Klinken, GJ. 1992. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS. Radiocarbon 34(3):279–91.CrossRefGoogle Scholar
Heier-Nielsen, S, Heinemeier, J, Nielsen, HL, Rud, N. 1995. Recent reservoir ages for Danish fjords and marine waters. Radiocarbon 37(3):875–82.CrossRefGoogle Scholar
Heinemeier, J, Rud, N. 1997. Kulstof-14 datering med acceleratormetoden (AMS). Grønland 5–7:232–8.Google Scholar
Høegh, OA. 1982. Tang I, Norge. Kulturhistorisk Leksikon for Nordisk Middelalder 18:124–8.Google Scholar
Johansen, OS, Gulliksen, S, Nydal, R. 1986. δ13C and diet: analysis of Norwegian human skeletons. Radiocarbon 28:754–61.CrossRefGoogle Scholar
Jones, G. 1986. The Norse Atlantic Saga. New York: Oxford University Press. 337 p.Google Scholar
Jónsson, F. 1930. Det gamle Grønlands beskrivelse af Ívar Bárðrson. Copenhagen: Levin & Munksgaard. 75 p.Google Scholar
Kieffer-Olsen, J. 1993. Grav og gravskik i det middelal-derlige Danmark. Afdeling for Middelalder-arkæologi og Middelalder-arkæologisk Nyhedsbrev (Aarhus University): 1212.Google Scholar
Kristjánsson, L. 1982. Tang I, Island. Kulturhistorisk Leksikon for Nordisk Middelalder 18:128–30.Google Scholar
Krogh, KJ. 1967. Viking Greenland. Copenhagen: The National Museum. 182 p.Google Scholar
Lanting, JN, Van der Plicht, J. 1996. Wat hebben Floris V, skelet swifterbant S2 en visotters gemeen? [resumé in English]. Palaeohistoria 37/38:491519.Google Scholar
Lidén, K, Nelson, DE. 1994. Stable-carbon isotopes as dietary indicator in the Baltic area. Fornvännen 89:14–21.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241–2.CrossRefGoogle ScholarPubMed
Lovell, NC, Nelson, DE, Schwarcz, HP. 1986. Carbon isotope ratios in paleodiet: lack of age or sex effect. Archaeometry 28:51–5.CrossRefGoogle Scholar
Lynnerup, N. 1998. The Greenland Norse – a biological-anthropological study. Meddelelser om Grønland –Man & Society 24:1–149.Google Scholar
Lynnerup, N, Brings Jacobsen, JC, Thorsen, C, Kludt, T. 1997. Menneskeknoglerne fra gravene ved Asummiut. Grønland 5–7:227–32.Google Scholar
Nørlund, P. 1924. Buried Norsemen at Herjolfsnes. Meddelelser om Grønland 67:1–270.Google Scholar
Nørlund, P. 1930. Norse ruins at Gardar. Meddelelser om Grønland 76:1–170.Google Scholar
Redin, L. 1970. Lagmanshejdan: ett gravfelt som spegling av sociala strukturer i Skanør. Acta archaeologica Lundensia 10:1–201.Google Scholar
Renfrew, C, Bahn, P. 1991. Archaeology: Theory, methods and practice. London: Thames and Hudson. 543 p.Google Scholar
Roussell, Aa. 1936. Sandnes and the neighbouring farms. Meddelelser om Grønland 88(2):1–219.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–90.CrossRefGoogle Scholar
Stuiver, M, Grootes, PM, Braziunas, T. 1995. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44:341–54.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):980–1021.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–30.CrossRefGoogle Scholar
Tauber, H. 1981. 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292:332–3.CrossRefGoogle ScholarPubMed
Tauber, H. 1984. 14C Dating of human beings in relation to dietary habits. In: Mook, WG, Waterbolk, HT, editors. Proceedings of the First International Symposium on 14 C and Archaeology. PACT 8. Strasbourg: Council of Europe. p 365–75.Google Scholar
Van der Merwe, NJ. 1982. Carbon isotopes, photosynthesis, and archaeology. American Scientist 70:596–606.Google Scholar
Van der Merwe, NJ. 1989. Natural variation in 13C concentration and its effect on environmental reconstruction using 13C/12C ratios in animal bones. In: Price, DT, editor. The chemistry of prehistoric human bone. Cambridge: Cambridge University Press. p 105–25.Google Scholar
Van der Merwe, NJ, Vogel, JC. 1978. 13C content of human collagen as a measure of prehistoric diet in Woodland North America. Nature 276:815–6.CrossRefGoogle ScholarPubMed
Vebæk, CL. 1991. The church topography of the Eastern Settlement and the excavation of the Benedictine Convent Narsarsuaq in the Uunartoq Fjord. Meddelelser om Grønland – Man & Society 14:1–81.Google Scholar
Vogel, JC, Fulls, A, Ellis, RP. 1978. The geographical distribution of Kranz grass in South Africa. South African Journal of Science 74:209–15.Google Scholar