Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T15:37:36.289Z Has data issue: false hasContentIssue false

The Bivalve Glycymeris pilosa as an Archive of 14C in the Mediterranean Sea

Published online by Cambridge University Press:  15 January 2019

Melita Peharda*
Affiliation:
Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21 000 Split, Croatia
Andreja Sironić
Affiliation:
Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
Krešimir Markulin
Affiliation:
Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21 000 Split, Croatia
Slaven Jozić
Affiliation:
Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21 000 Split, Croatia
Damir Borković
Affiliation:
Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
Carin Andersson
Affiliation:
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
*
*Corresponding author. Email: [email protected].

Abstract

This study combines radiocarbon (14C) analysis and sclerochronology research, an approach that to the best of our knowledge, has not yet been applied using bivalves from the Mediterranean Sea. We analyzed shells from the North Adriatic Sea: live- and dead-collected specimens of the infaunal bivalve Glycymeris pilosa and two dead-collected specimens of Glycymeris sp. According to crossdating results, growth increment time series obtained from acetate peels of the dead-collected G. pilosa (S3FP11) indicate the potential for creating longer chronologies from live and dead-collected specimens. The greatest longevity was seen in the dead-collected Glycymeris sp. specimen S3F3, estimated to be ~130 years (started growing AD 1678–1742 and died AD 1826–1860), indicating the potential to extend Glycymeris growth increment chronologies to past centuries. The highest ∆14C values obtained corresponded to the calendar year 1974. The 14C record obtained from G. pilosa correlates well with the modeled surface ocean (mixed-layer) bomb pulse curve (Reimer et al. 2009). Based on the results obtained from the shell growth increment assigned to AD 1950, the reservoir age and reservoir correction (ΔR) are 264±23 years and –6±32 years, respectively.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, MJ, Payne, B. 2017. Molluscs in archaeology: an introduction. In: Allen MJ, editor. Molluscs in archeology: methods, approaches and applications. Oxford & Philadelphia: Oxbow Books. p. 14.Google Scholar
Altaba, CR, Forés, M, Monserrat, S. 2016. Long-term environmental record in Glycymeris inflata, a relic of Mediterranean old-growth soft bottoms. In: Malchus N, Pons JM,oeditors. Abstracts and Posters of the “International Congress on Bivalvia” at the Universitat Autònoma de Barcelona, Spain, 22–27 July 2006. Organisms Diversity & Evolution 6 (Electr Suppl 16): 15.Google Scholar
Antonioli, F, Oliverio, M. 1996. Holocene sea-level rise recorded by a radiocarbon-dated mussel in a submerged speleothem beneath the Mediterranean Sea. Quaternary Research 45:241244.Google Scholar
Ayache, M, Dutay, J-C, Mouchet, A, Tisnerat-Labore, N, Montagna, P, Tanhua, T, Siani, G, Jean-Baptiste, J. 2017. High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea. Biogeosciences 14:11971213.Google Scholar
Beierlein, L, Salvigsen, O, Schöne, BR, Mackensen, A, Brey, T. 2015. The seasonal water temperature cycle in the Arctic Dicksonfjord (Svalbard) during the Holocene Climate Optimum derived from subfossil Arctica islandica shells. The Holocene 25(8):11971207.Google Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381389.Google Scholar
Butler, PG, Scourse, JD, Richardson, CA, Wanamaker, AD Jr, Bryant, CL, Bennell, JD. 2009. Continuous marine radiocarbon reservoir calibration and the 13C Suess effect in the Irish Sea: Results from the first multi-centennial shell-based marine master chronology. Earth and Planetary Science Letters 279:230241.Google Scholar
Butler, PG, Wanamaker, AD, Scourse, JD, Richardson, CA, Reynolds, DJ. 2013. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica . Palaeogeography, Palaeoclimatology, Palaeoecology 373:141151.Google Scholar
Cullen, DJ. 1970. Radiocarbon analysis of individual molluscan species in relation post-glacial Eustatic changes. Palaeogeography, Palaeoclimatology, Palaeoecology 7(1):1320.Google Scholar
Diaz, M, Macario, KD, Gomes, PRS, Álvarez-Lajonchere, L, Aguilera, O, Alves, EQ. 2017. Radiocarbon marine reservoir effect on the northwestern coast of Cuba. Radiocarbon 59(2):333341.Google Scholar
Ezgeta-Balić, D, Peharda, M, Richardson, CA, Kuzmanić, M, Vrgoč, N, Isajlović, N. 2011. Age, growth, and population structure of the smooth clam Callista chione in the eastern Adriatic Sea. Helgoland Marine Research 65:457465.Google Scholar
Faivre, S, Bakran-Petricioli, T, Barešić, J, Horvatinčić, N. 2015. New data on marine radiocarbon reservoir effect in the eastern Adriatic based on pre-bomb marine organisms from the intertidal zone and shallow sea. Radiocarbon 57(4):527538.Google Scholar
Fernandes, R, Dreves, A. 2017. Bivalves and radiocarbon. In: Allen MJ, editor. Molluscs in archeology: Methods, Approaches and Applications. Cambridge: Oxbow Books. p. 364380.Google Scholar
Fritts, HC. 1976. Tree rings and climate. New York: Academic Press.Google Scholar
Grissino-Mayer, HD. 2001 Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57:205221.Google Scholar
Gutierrez-Mas, JM. 2011. Glycymeris shell accumulations as indicators of recent sea-level changes and high-energy events in Cadiz Bay (SW Spain). Estuarine Coastal and Shelf Science 92(4):546554.Google Scholar
Helama, S, Nielsen, JK, Nielsen, JK, Hanken, NM, Evison, K. 2014. Preboreal oscillations inferred from Arctica islandica sclerochronology. Geobios 47(5):305313.Google Scholar
Holland, HA, Schöne, BR, Lipowski, C, Esper, J. 2014. Decadal climate variability of the North Sea during the last millennium reconstructed from bivalve shells (Arctica islandica). Holocene 24(7):771786.Google Scholar
Holmes, RL. 1983. Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bulletin 43:6978.Google Scholar
Kastelle, CR, Hesler, TE, Black, BA, Stuckey, MJ, Gillespie, DC, McArthur, J, Little, D, Charles, KD, Khan, RS. 2011. Bomb-produced radiocarbon validation of growth increment crossdating allows marine paleoclimate reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 311:126135.Google Scholar
Kilada, RW, Campana, SE, Roddick, D. 2007. Validated age, growth, and mortality estimates of the ocean quahog (Arctica islandica) in the western Atlantic. ICES Journal of Marine Science: Journal du Conseil 64(1):3138.Google Scholar
Kim, JS, Woo, KS, Hong, W. 2016. High resolution geochemical investigation of the bivalve shells (Glycymeris sp.) from shell mounds in Jeju Island, Korea: Late Holocene paleoclimatic implications related to East Asian Monsoon climate. Quaternary International 392:312.Google Scholar
Krajcar Bronić, I, Horvatinčić, N, Sironić, A, Obelić, B, Barešić, J, Felja, I. 2010. A new graphite preparation line for AMS 14C dating in the Zagreb radiocarbon laboratory. Nuclear Instruments and Methods in Physics Research B 268:943946.Google Scholar
Langone, L, Asioli, A, Correggiari, A, Trincardi, F. 1996. Age-depth modelling through the late Quaternary deposits of the central Adriatic basin. Memorie dell’Instituto Italiano di Idrobiologia 55:177196.Google Scholar
Legac, M, Hrs-Brenko, M. 1999. A review of bivalve species in the eastern Adriatic Sea. III Pteriomorpha (Glycymerididae). Natura Croatica 8(1):925.Google Scholar
Leesen von, G, Beierlein, L, Scarponi, D, Schöne, BR, Brey, T. 2017. A low seasonality scenario in the Mediterranean Sea during the Calabrian (Early Pleistocene) inferred from fossil Arctica islandica shells. Palaeogeography, Palaeoclimatology, Palaeoecology 485:706714.Google Scholar
McLaren, S, Gardner, R. 2000. New radiocarbon dates from a Holocene aeolianite, Isla Cancun, Quintana Roo, Mexico. The Holocene 10(6):757761.Google Scholar
Milano, S, Nehrke, G, Wanamaker, AD Jr, Ballestra-Artero, I, Brey, T, Schöne, BR. 2017. The effects of environment on Arctica islandica shell formation and architecture. Biogeosciences 14:15771591.Google Scholar
Morrongiello, JR, Tresher, RE, Smith, DC. 2012. Aquatic biochronologies and climate change. Nature Climate Change 2(12): 849857.Google Scholar
Orlić, M, Gačić, M, La Violette, PE. 1992. The currents and circulation of the Adriatic Sea. Oceanologica Acta 15(2):109124 Google Scholar
Peharda, M, Ezgeta-Balić, D, Vrgoč, N, Isajlović, I, Bogner, D. 2010. Description of bivalve community structure in the Croatian part of the Adriatic Sea – hydraulic dredge survey. Acta Adriatica 51(2):141158.Google Scholar
Peharda, M, Black, BA, Purroy, A, Mihanović, H. 2016. The bivalve Glycymeris pilosa as a multidecadal environmental archive for the Adriatic and Mediterranean Seas. Marine Environmental Research 119:7987.Google Scholar
Peharda, M, Thébault, J, Markulin, K, Schöne, BR, Janeković, I, Chauvaud, L. 2017. Contrasting shell growth strategies in two Mediterranean bivalves revealed by oxygen-isotope ratio geochemistry: the case of Pecten jacobaeus and Glycymeris pilosa. Chemical Geology doi: 10.1016/j.chemgeo.2017.09.029.Google Scholar
Peharda, M, Vilibić, I, Black, BA, Markulin, K, Dunić, N, Džoić, T, Mihanović, H, Gačić, M, Puljas, S. 2018. Waldman R. Using bivalve chronologies for quantifying environmental drivers in a semi-enclosed temperate sea. Scientific Reports 8:5559.Google Scholar
Prendergast, AL, Versteegh, EAA, Schöne, BR. 2017. New research on the development of high-resolution palaeoenvironmental proxies from geochemical properties of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 484:16.Google Scholar
Purroy, A, Šegvić-Bubić, T, Holmes, A, Bušelić, I, Thébault, J, Featherstone, A, Peharda, M. 2016. Combined use of morphological tools to resolve species mis-identifications in the Bivalvia – the case of Glycymeris glycymeris and G. pilosa . Plos ONE 11(9): e0162059.Google Scholar
Reimer, PJ, McCormac, FG. 2002. Marine reservoir corrections for the Mediterranean and Aegean Seas. Radiocarbon 44(1):159166.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50 000 years cal BP. Radiocarbon 51(4):11111150.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Reynolds, DJ, Butler, PG, Williams, SM, Scourse, JD, Richardson, CA, Wanamaker, AD, Austin, WEN, Cage, AG. 2013. A multiproxy reconstruction of Hebridean (NW Scotland) spring sea surface temperatures between AD 1805 and 2010. Paleogeography, Paleoclimatology, Paleoecology 386:275285.Google Scholar
Reynolds, DJ, Hall, IR, Scourse, JD, Richardson, CA, Wanamaker, AD, Butler, PG. 2017. Biological and climate controls on North Atlantic marine carbon dynamics over the last millennium: Insights from an absolutely‐dated shell based record from the North Icelandic Shelf. Global Biogeochemical Cycles 31:17181735.Google Scholar
Richardson, CA. 2001. Molluscs as archives of environmental change. Oceanography and Marine Biology: An Annual Review 39:103164.Google Scholar
Schöne, BR, Gillikin, DP. 2013. Unraveling environmental histories from skeletal diaries – advances in sclerochronology. Palaeogeography Palaeoclimatology Palaeoecology 373(1):15.Google Scholar
Schöne, BR, Oschmann, W, Rössler, J, Freyre Castro, AD, Houk, SD, Kröncke, I, Dreyer, W, Janssen, R, Rumohr, H, Dunca, E. 2003. North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology 31(12):10371040.Google Scholar
Schöne, BR, Freyre Castro, AD, Fiebig, J, Houk, SD, Oschmann, W, Kröcke, I. 2004. Sea surface water temperature over the period 1884-1093 reconstructed from oxygen isotope ratios of a bivalve mollusc shell (Arctica islandica, southern North Sea). Paleogeography, Paleoclimatology, Paleoecology 212(3-4):215232.Google Scholar
Schöne, BR, Fiebig, J, Pfeiffer, M, Gleß, R, Hickson, J, Johnson, ALA, Dreyer, W, Oschmann, W. 2005. Climate records from a bivalve Methuselah (Arctica islandica, Mollusca, Iceland). Paleogeography, Paleoclimatology, Paleoecology 228(1–2):130148.Google Scholar
Schöne, BR, Wanamaker, AD, Fiebig, J, Thébault, J, Kreutz, K. 2011. Annually resolved δ13C shell chronologies of long-lived bivalve mollusks (Arctica islandica) reveal oceanic carbon dynamics in the temperate North Atlantic during recent centuries. Palaeogeography, Palaeoclimatology, Palaeoecology 302(1–2):3142.Google Scholar
Scourse, J, Richardson, C, Forsythe, G, Harris, I, Heinemeier, J, Fraser, N, Briffa, K, Jones, P. 2006. First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica Islandica Holocene 16(7):967974.Google Scholar
Scourse, JD, Wanamaker, ADJr, Weidman, C, Heinemeier, J, Reimer, PJ, Butler, PG, Witbaard, , R, Richardson, CA. 2012. The marine radiocarbon bomb pulse across the temperate North Atlantic: a compilation of Δ14C time histories from Arctica islandica growth increments. Radiocarbon 54(2):165186.Google Scholar
Shaw, B, Jackson, JA, Higham, TFG, England, PC, Thomas, AL. 2010. Radiometric dates of uplifted marine fauna in Greece: Implications for the interpretation of recent earthquake and tectonic histories using lithophagid dates. Earth and Planetary Science Letters 297(3–4):395405.Google Scholar
Shirai, K, Kubota, K, Murakami-Sugihara, N, Seike, K, Hakozaki, M, Tanabe, K. 2018. Stimpson’s hard clam Mercenaria stimpsoni; A multi-decadal climate recorder for the northwest Pacific coast. Marine Environmental Research 133:4956.Google Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Métivier, B, Tisnerat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea. Radiocarbon 42(2):271280.Google Scholar
Sironić, A, Krajcar Bronić, I, Horvatinčić, N, Barešić, J, Obelić, B, Felja, I. 2013. Status report on the Zagreb Radiocarbon Laboratory – AMS and LSC results of VIRI intercomparison samples. Nuclear Instruments and Methods in Physics Research B 294:185188.Google Scholar
Sivan, D, Potasman, M, Almogi-Labin, A, Bar-Yosef Mayer, DE, Spanier, E, Boaretto, E. 2006. The Glycymeris query along the coast and shallow shelf of Israel, southeast Mediterranean. Paleogeography, Paleoclimatology, Paleoecology 233:134148.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2):9801021 Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137189.Google Scholar
Tisnérat-Laborde, N, Montagna, P, McCulloch, M, Siani, G, Silenzi, S, Frank, N. 2013. A high-resolution coral-based Δ14C record of surface water processes in the western Mediterranean Sea. Radiocarbon 55(3):16171630.Google Scholar
Turekian, KK, Cochran, JK, Nozaki, Y, Thompson, I, Jones, DS. 1982. Determination of shell deposition rates of Arctica islandica from the New York Bight using natural 228Ra and 228Th and bomb‐produced 14C. Limnology and Oceanography 27(4):737741.Google Scholar
van der Plicht, J, Hogg, A. 2006. A note on reporting radiocarbon. Quaternary Geochronology 1:237240.Google Scholar
Yoneda, M, Uno, H, Shibata, Y, Suzuki, R, Kumamoto, Y, Yoshida, K, Sasaki, T, Suzuki, A, Kawahata, H. 2007. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. New Instruments and Methods in Physics Research B 259:432437.Google Scholar
Wanamaker, AD Jr, Heinemeier, J, Scourse, JD, Richardson, CA, Butler, PG, Eiríksson, J, Knudsen, KL. 2008. Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for north Icelandic shelf waters. Radiocarbon 50(3):399412.Google Scholar
Wanamaker, AD, Butler, PG, Scourse, JD, Heinemeier, J, Eiríksson, J, Knudsen, KL, Richardson, CA. 2012. Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nature Communications 3:899.Google Scholar
Wanninkhof, R, Asher, WE, Ho, DT, Sweeney, C, McGillis, WR. 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annual Reviev of Marine Science 1:213244.Google Scholar