Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:02:15.459Z Has data issue: false hasContentIssue false

Anomalous 11-Year Δ14C Cycle at High Latitudes?

Published online by Cambridge University Press:  18 July 2016

P. E. Damon
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
George Burr
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
W. J. Cain
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA Department of Chemistry, Loyola-Marymount University, Los Angeles, California 90045 USA
D. J. Donahue
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We find no evidence for an anomalously intense 11-yr cycle in Δ14C at high latitudes during the period, AD 1870–1885, as reported by Fan et al. (1983, 1986). However, there does appear to be a regional effect within the MacKenzie River region (67°N, 130°W), with atmospheric 14C depressed by relative to the Olympic Peninsula. Such an effect would require only 5% of CO2 in the air mass to have been derived from 5% 14C-depleted soil gas CO2. This small but apparently significant regional effect could be caused by accumulation of CO2 within the frozen earth followed by outgassing during the spring thaw. The short growing season would enhance the effect by allowing insufficient time for global atmospheric equilibration.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Damon, P. E., Cheng, S. and Linick, T. W. 1989 Fine and hyperfine structure in the spectrum of secular variations of atmospheric 14C. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 704.Google Scholar
Damon, P. E., Sternberg, R. S. and Radnell, C. J. 1983 Modeling of atmospheric radiocarbon fluctuations for the past three centuries. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 249258.Google Scholar
Donahue, D. J., Linick, T. W. and Jull, A. J. T. 1990 Isotope-ratio and back ground corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2): 135142.Google Scholar
Dörr, H. and Münnich, K. O. 1986 Annual variations of the 14C content of soil and CO2 . In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 338345.Google Scholar
Fan, C. Y., Chen, T. M., Yun, S. X. and Dai, K. M. 1983 Radiocarbon activity variation in dated tree rings grown in MacKenzie Delta. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 205212.CrossRefGoogle Scholar
Fan, C. Y., Chen, T. M., Yun, S. X. and Dai, K. M. 1986 Radiocarbon activity variation in dated tree rings grown in MacKenzie Delta. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 300305.Google Scholar
Jonasson, I. R. and Dyck, W. 1978 Dissolved gases in snow-melt waters. Chemical Geology 21: 1524.Google Scholar
Lingenfelter, R. E. and Ramaty, R. 1970 Astrophysical and geophysical variations in 14C production. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology . Proceedings of the 12th Nobel Symposium. New York, John Wiley & Sons: 513537.Google Scholar
Linick, T. W., Jull, A. J. T., Toolin, L. J. and Donahue, D. J. 1986a Operation of the NSF-Arizona accelerator facility for radioisotope analysis and results from selected collaborative research projects. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 522533.CrossRefGoogle Scholar
Linick, T. W., Long, A., Damon, P. E. and Ferguson, C. W. 1986b High-precision radiocarbon dating of bristlecone pine from 6554 to 5350 bc. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 943953.Google Scholar
Messerschmidt, W. 1933 Eine neue Untersuchung der Zusammenhänge mit der Meteorologischen Factoren und des Einflusses den Emanations-gehältes der Atmosphäre auf die Messungen der Ultrastrahlung. Zeitschrift für Physik 81: 84100.Google Scholar
Slota, P. J. Jr., Jull, A. J. T., Linick, T. W. and Toolin, L. J. 1987 Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2): 303306.Google Scholar
Stuiver, M. and Quay, P. D. 1981 Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray variability. Earth and Planetary Science Letters 53: 349362.Google Scholar