Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T06:47:45.704Z Has data issue: false hasContentIssue false

Annually Verified Growth of Cedrela Fissilis from Central Brazil

Published online by Cambridge University Press:  06 June 2019

Izabela Hammerschlag
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil Programa de Pós-graduação em Física da Universidade Federal Fluminense, Niterói, RJ, Brazil
Kita D Macario*
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil Programa de Pós-graduação em Física da Universidade Federal Fluminense, Niterói, RJ, Brazil
Ana Carolina Barbosa
Affiliation:
Laboratório de Dendrocronologia, Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, MG, Brazil
Gabriel de Assis Pereira
Affiliation:
Laboratório de Dendrocronologia, Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, MG, Brazil
Camila Laís Farrapo
Affiliation:
Laboratório de Dendrocronologia, Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras, MG, Brazil
Francisco Cruz
Affiliation:
Instituto de Geociências, Universidade de São Paulo, SP, Brazil
*
*Corresponding author. Email: [email protected].

Abstract

Given the difficulty in obtaining robust chronologies from tree rings in tropical regions, the search for appropriate species is very important. Both dendrochronology and radiocarbon (14C) measurements are required to validate the use of any specific tree. Some species have proved to be reliable for representing atmospheric 14C concentration over time, such as Cedrela fissilis and Araucaria angustifolia. However, not only the species have to be validated, but also different climatic conditions may result in different growth patterns for the same species. In this work, we study the annual growth rings of Cedrela fissilis from a dry tropical forest patch typical of a highly seasonal climate in central Brazil. 14C accelerator mass spectrometry (AMS) was used to compare the isotopic ratios of tree rings with the 14C concentrations in the atmosphere during the nuclear tests based on curve Bomb13SH 1-2. Results are similar to the bomb peak curve within the period from 1958 to 1980 AD and serve as a crucial test for the cross-dating analyses using the skeleton plot technique.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, E, Macario, K, Ascough, P, Bronk, Ramsey C. 2018. The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms and prospects. Reviews of Geophysics 56(1):278305.CrossRefGoogle Scholar
Anjos, RM, Macario, KD, Gomes, PRS, Linares, R, Queiroz, E, Carvalho, C. 2013. Towards a complete 14C AMS facility at the Universidade Federal Fluminense (Niterói, Brazil): sample preparation laboratory tests. Nuclear Instruments and Methods in Physics Research B 294:173175.CrossRefGoogle Scholar
Baker, JC, Santos, GM, Gloor, M, Brienen, RJ. 2017. Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31(6):19992009.CrossRefGoogle ScholarPubMed
Brienen, RJ, Zuidema, PA. 2005. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146(1):1.CrossRefGoogle ScholarPubMed
Brienen, RJW, Lebrija-Trejos, E, Zuidema, PA, Martínez-Ramos, M. 2010. Climate-growth analysis for a mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Global Change Biology 16(7):20012012.CrossRefGoogle Scholar
Brienen, RJW, Helle, G, Pons, TL, Guyot, JL, Gloor, M. 2012. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation Variability. Proceedings of the National Academy of Sciences 109:1695716962.CrossRefGoogle ScholarPubMed
Bronk, Ramsey C, van der Plicht, J, Weninger, B. 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43(2A):381389.CrossRefGoogle Scholar
Bronk, Ramsey C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.Google Scholar
Bronk, Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1): 337360.CrossRefGoogle Scholar
Buchholz, BA, Spalding, KL. 2010. Year of birth determination using radiocarbon dating of dental enamel. Surface and Interface Analysis 42(5):398401.CrossRefGoogle ScholarPubMed
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physics Research B 268(7–8):867870.CrossRefGoogle Scholar
Cook, ER, Kairiukstis, LA. 1989. Methods of dendrochroology– applications in the environmental sciences. The Netherlands: Kluwer Academic Publishers. 394 p.Google Scholar
Dünisch, O. 2005. Influence of the El-Niño Southern Oscillation on cambial growth of Cedrela Fissilis Vell. in tropical and subtropical Brazil. Journal of Applied Botany and Food Quality 79:511.Google Scholar
Fick, SE, Hijmans, RJ. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 43024315.CrossRefGoogle Scholar
Galimberti, M, Bronk, Ramsey C, Manning, SW. 2004. Wiggle-match dating of tree-ring sequences. Radiocarbon 46(2):917924.CrossRefGoogle Scholar
Garreaud, RD, Vuille, M, Compagnucci, R, Marengo, J. 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeo-ecology 281(3–4):180195.CrossRefGoogle Scholar
Goh, KM, Molloy, BPJ. 1972. Reliability of radiocarbon dates from buried charcoals. Proceedings of the 8th International Conference on Radiocarbon Dating, Lower Hutt, New Zealand. p 565581, G40.Google Scholar
Granato-Souza, D, Stahle, DW, Barbosa, AC, Feng, S, Torbenson, MC, de Assis Pereira, G, Schöngart, J, Barbosa, JP, Griffin, D. 2019. Tree rings and rainfall in the equatorial Amazon. Climate Dynamics 52(3–4):18571869.CrossRefGoogle Scholar
Hajdas, I, Hendriks, L, Fontana, A, Monegato, G. 2017. Evaluation of preparation methods in radiocarbon dating of old wood. Radiocarbon 59(3):727737.CrossRefGoogle Scholar
Hedges, REM, Housley, RA, Law, IA, Bronk, Ramsey C. 1989. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 9. Archaeometry 31(2):207234.CrossRefGoogle Scholar
Hogg, AG, Higham, TF, Lowe, DJ, Palmer, JG, Reimer, PJ, Newnham, RM. 2003. A wiggle-match date for Polynesian settlement of New Zealand. Antiquity 77(295):116125.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):18891903.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.CrossRefGoogle Scholar
Leavitt, SW, Danzer, SR. 1993. Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Analytical Chemistry 65(1):8789.CrossRefGoogle Scholar
Levin, I, Kromer, B, Wagenbach, D, Münnich, KO. 1987. Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus B 39(1–2): 8995.CrossRefGoogle Scholar
Linares, R, Santos, HC, Brandes, AFN, Barros, CF, Lisi, CS, Balieiro, FC, de Faria, S. M. 2017. Exploring the 14C bomb peak with tree rings of tropical species from the Amazon forest. Radiocarbon 59(2):303313.Google Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, Alves, EQ, Jou, RM, Oliveira, MI, Pereira, BB, Moreira, V, Muniz, MC, Linares, R, Gomes, PRS, Anjos, RM, Castro, MD, Anjos, L, Marques, AN, Rodrigues, LF. 2015. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments and Methods in Physics Research B 361:402405.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Carvalho, C, Oliveira, FM, Bronk, Ramsey C, Chivall, D, Souza, R, Simone, LRL, Cavallari, DC. 2016a. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir. Nature Publishing Group. Scientific Reports 6:27395.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TF, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):10871092.CrossRefGoogle Scholar
Murphy, PG, Lugo, AE. 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics 17:6788.CrossRefGoogle Scholar
NOAA, National Oceanic and Atmospheric Administration. 2018. The International Tree-Ring Data Bank. https://www.ncdc.noaa.gov/paleo-search/study/25330.Google Scholar
Pereira, GA, Barbosa, ACMC, Torbenson, M, Stahle, DW, Granato-Souza, D, Santos, RM, Barbosa, JPRAD. 2018. The climate response of Cedrela fissilis annual ring width in the Rio São Francisco basin, Brazil. Tree-Ring Research 74(2):162171.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk, Ramsey C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Rodgers, KB, Mikaloff-Fletcher, SE, Bianchi, D, Beaulieu, C, Galbraith, ED, Gnanadesikan, A, Hogg, AG, Iudicone, D, Lintner, BR, Naegler, T, Reimer, PJ, Sarmiento, JL, Slater, RD. 2011. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Climate of the Past 7:11231138.CrossRefGoogle Scholar
Rubel, F, Kottek, M. 2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift 19(2):135141.CrossRefGoogle Scholar
Santos, GM, Bird, MI, Pillans, B, Fifield, LK, Alloway, BV, Chappell, J, Hausladen, PA, Arneth, A. 2001. Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand. Radiocarbon 43(2A):239248.CrossRefGoogle Scholar
Santos, GM, Ormsby, K. 2013. Behavioral variability in ABA chemical pretreatment close to the 14C age limit. Radiocarbon 55(2):534544.CrossRefGoogle Scholar
Santos, GM, Linares, R, Lisi, CS, Tomazello, Filho M. 2015. Annual growth rings in a sample of Paraná pine (Araucaria angustifolia): toward improving the 14C calibration curve for the Southern Hemisphere. Quaternary Geochronology 25:96103.CrossRefGoogle Scholar
Sierra, C, Müller, M, Trumbore, SE. 2014. Modeling radiocarbon dynamics in soils: SoilR version 1.1. Geoscientific Model Development 7(5):19191931.CrossRefGoogle Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52(3):13711379.CrossRefGoogle Scholar
Speranza, A, van der Plicht, J, van Geel, B. 2000. Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching. Quaternary Science Reviews 19(16):15891604.CrossRefGoogle Scholar
Stahle, DW. 1999. Useful strategies for the development of tropical tree-ring chronologies. IAWA Journal 20(3):249253.CrossRefGoogle Scholar
Stokes, MA, Smiley, TL. 1968. An introduction to tree-ring dating. Chicago: The University of Chicago Press. 73 p.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):10411083.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122 (3166):415417.CrossRefGoogle Scholar
Tomazello, Filho M, Botosso, PC, Lisi, CS. 2000. Potencialidade da família Meliaceae para dendrocronologia em regiıes tropicais e subtropicais. ROING, FA (Comp.). Dendrocronología em América Latina. EDIUNC: Mendoza. p. 381431.Google Scholar
Uno, KT, Quade, J, Fisher, DC, Wittemyer, G, Douglas-Hamilton, I, Andanje, S, Omondi, P, Litoroh, M, Cerling, TE. 2013. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo) ecology. Proceedings of the National Academy of Sciences 110(29):1173611741.CrossRefGoogle ScholarPubMed
van der Plicht, J, Jansma, E, Kars, H. 1995. The “Amsterdam Castle”: a case study of wiggle matching and the proper calibration curve. Radiocarbon 37(3):965968.CrossRefGoogle Scholar
van der Plicht, J. 2007. Radiocarbon dating: variations in atmospheric 14C. In: Elias, S, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier. p. 29232931.CrossRefGoogle Scholar
Vera, C, Higgins, W, Amador, J, Ambrizzi, T, Garreaud, R, Gochis, D, Gutzler, D, Lettenmaier, D, Marengo, J, Mechoso, CR, Nogues-Paegle, J, Silva Dias, PL, Zhang, C. 2006. Toward a unified view of the American monsoon systems. Journal of Climate 19(20):49775000.CrossRefGoogle Scholar
Worbes, M. 1995. How to measure growth dynamics in tropical trees a review. IAWA Journal 16(4):337351.CrossRefGoogle Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research 259(1):320329.CrossRefGoogle Scholar