Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T16:23:42.234Z Has data issue: false hasContentIssue false

Annual 14C Tree-Ring Data Around 400 AD: Mid- and High-Latitude Records

Published online by Cambridge University Press:  30 April 2019

Ronny Friedrich*
Affiliation:
Curt Engelhorn Center for Archaeometry, Mannheim, Germany
Bernd Kromer
Affiliation:
Curt Engelhorn Center for Archaeometry, Mannheim, Germany
Frank Sirocko
Affiliation:
Johannes Gutenberg University, Institute for Geoscience, Mainz, Germany
Jan Esper
Affiliation:
Johannes Gutenberg University, Institute for Geoscience, Mainz, Germany
Susanne Lindauer
Affiliation:
Curt Engelhorn Center for Archaeometry, Mannheim, Germany
Daniel Nievergelt
Affiliation:
Swiss Federal Research Institute, WSL – Dendrochronology, Birmensdorf, Switzerland
Karl Uwe Heussner
Affiliation:
German Archaeological Institute, Dendrochronology Laboratory, Berlin, Germany
Thorsten Westphal
Affiliation:
Curt Engelhorn Center for Archaeometry, Mannheim, Germany
*
*Corresponding author. Email: [email protected].

Abstract

Two tree-ring series, one from a high-latitude pine tree (located in northern Scandinavia) and one from a mid-latitude oak tree (located in eastern Germany) were analyzed for radiocarbon (14C) at annual resolution. The new records cover the calendar date ranges 290–460 AD and 382–486 AD, respectively, overlapping by 79 yr. The series show similar trends as IntCal13. However, some significant deviations around 400 AD are present with lower Δ14C (higher 14C ages). An average offset between the two new series and IntCal13 of about 20 years in conventional 14C age is observed. A latitudinal 14C offset between the tree sites in central and northern Europe, as would be expected due to the relatively large spatial distance, is not recorded, however. Periodic changes in the 14C records are resolved that can be attributed to the “11-year” solar cycle (Schwabe cycle) with cycle length from 9 to 11 years. The magnitude of changes in Δ14C due to the solar cycle is between 1.5 and 3‰. Since solar cyclicity is only partially synchronous between the two new series, reasons for asynchronicity are explored.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Baillie, MGL, Pilcher, JR. 1973. A simple crossdating program for tree-ring research; [accessed 2018 Aug 12]. https://repository.arizona.edu/handle/10150/260029.Google Scholar
Braziunas, TF, Fung, IY, Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9:565584. doi: 10.1029/95GB01725.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Ramsey, CB. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (Orau). Radiocarbon 52:103112. doi: 10.1017/S0033822200045069.CrossRefGoogle Scholar
Eronen, M, Zetterberg, P, Briffa, KR, Lindholm, M, Meriläinen, J, Timonen, M. 2002. The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1, chronology construction and initial inferences. The Holocene 12:673680. doi: 10.1191/0959683602hl580rp.CrossRefGoogle Scholar
Eschbach, W, Nogler, P, Schaer, E, Schweingruber, F. 1995. Technical advance in the radiodensitometrical determination of wood density. Dendrochronologia 15:155168.Google Scholar
Esper, J. 2018a. Tree-ring widths of Pinus sylvestris of tree samples Kom1213175a. Curt-Engelhorn-Zentrum Archäometrie gGmbH. doi: 10.1594/PANGAEA.884493; [accessed 2018 Aug 12].Google Scholar
Esper, J. 2018b. Tree-ring widths of Pinus sylvestris of tree samples Kom1213175b. Curt-Engelhorn-Zentrum Archäometrie gGmbH. doi: 10.1594/PANGAEA.884494; [accessed 2018 Aug 12].Google Scholar
Esper, J, Frank, DC, Timonen, M, Zorita, E, Wilson, RJS, Luterbacher, J, Holzkämper, S, Fischer, N, Wagner, S, Nievergelt, D, et al. 2012. Orbital forcing of tree-ring data. Nature Climate Change 2:862866. doi: 10.1038/nclimate1589.CrossRefGoogle Scholar
Esper, J, Schneider, L, Smerdon, JE, Schöne, BR, Büntgen, U. 2015. Signals and memory in tree-ring width and density data. Dendrochronologia 35:6270. doi: 10.1016/j.dendro.2015.07.001.CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12460-year Hohenheim oak and pine tree-ring chronology from Central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):11111122. doi: 10.1017/S003382220003304X.CrossRefGoogle Scholar
Fu, P-L, Grießinger, J, Gebrekirstos, A, Fan, Z-X, Bräuning, A. 2017. Earlywood and latewood stable carbon and oxygen isotope variations in two pine species in southwestern China during the recent decades. Frontiers in Plant Science 7. doi: 10.3389/fpls.2016.02050; [accessed 2018 Aug 17].CrossRefGoogle ScholarPubMed
Güttler, D, Wacker, L, Kromer, B, Friedrich, M, Synal, H-A. 2013. Evidence of 11-year solar cycles in tree rings from 1010 to 1110 AD–progress on high precision AMS measurements. Nuclear Instruments and Methods in Physics Research B 294:459463. doi: 10.1016/j.nimb.2012.08.046.CrossRefGoogle Scholar
Hammer, S, Friedrich, R, Kromer, B, Cherkinsky, A, Lehman, SJ, Meijer, HA, Nakamura, T, Palonen, V, Reimer, RW, Smith, AM, et al. 2017. Compatibility of atmospheric 14CO2 measurements: comparing the Heidelberg Low-Level Counting Facility to international accelerator mass spectrometry (AMS) laboratories. Radiocarbon 59(3):875883.CrossRefGoogle Scholar
Hathaway, DH. 2015. The solar cycle. SpringerLink. Living Reviews in Solar Physics 12. doi: 10.1007/lrsp-2015-4; [accessed 2018 Aug 20].CrossRefGoogle Scholar
Heussner, K-U, Westphal, T. 2018. Tree-ring width of Quercus of tree sample Publik2918. Curt-Engelhorn-Zentrum Archäometrie gGmbH. doi: 10.1594/PANGAEA.884492; [accessed 2018 Aug 12].Google Scholar
Hogg, AG, Fifield, LK, Palmer, JG, Turney, CSM, Galbraith, R. 2007. Robust radiocarbon dating of wood samples by high-sensitivity liquid scintillation spectroscopy in the 50–70 kyr age range. Radiocarbon 49(2):379391. doi: 10.1017/S0033822200042314.CrossRefGoogle Scholar
Holmes, R. 1986. Quality control of crossdating and measuring. Users manual for computer program COFECHA. Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. [accessed 2018 Aug 29]. https://ci.nii.ac.jp/naid/10018908515/.Google Scholar
Hoyt, DV, Schatten, KH, Schatten, KH, Schatten, PD of the STRKH. 1997. The role of the Sun in climate change. New York: Oxford University Press.Google Scholar
Jöckel, P, Brenninkmeijer, CAM, Lawrence, MG, Siegmund, P. 2003. The detection of solar proton produced 14CO. Atmospheric Chemistry and Physics 3:9991005. doi: 10.5194/acp-3-999-2003.CrossRefGoogle Scholar
Kitchatinov, LL, Olemskoy, SV. 2016. Dynamo model for grand maxima of solar activity: can superflares occur on the Sun? Monthly Notices of the Royal Astronomical Society 459:43534359. doi: 10.1093/mnras/stw875.CrossRefGoogle Scholar
Kress, A, Young, GHF, Saurer, M, Loader, NJ, Siegwolf, RTW, McCarroll, D. 2009. Stable isotope coherence in the earlywood and latewood of tree-line conifers. Chemical Geology 268:5257. doi: 10.1016/j.chemgeo.2009.07.008.CrossRefGoogle Scholar
Kromer, B, Lindauer, S, Synal, H-A, Wacker, L. 2013. MAMS–a new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nuclear Instruments and Methods in Physics Research B 294:1113. doi: 10.1016/j.nimb.2012.01.015.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 Offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294:25292532. doi: 10.1126/science.1066114.CrossRefGoogle ScholarPubMed
Lee, G, Gommers, R, Wasilewski, F, Wohlfahrt, K, O’Leary, A, Nahrstaedt, H, contributors. 2006. PyWavelets–wavelet transforms in Python; [accessed 2018 Aug 28]. https://github.com/PyWavelets/pywt.Google Scholar
Mende, W, Stellmacher, R. 2000. Solar variability and the search for corresponding climate signals. Space Science Reviews 94:295306. doi: 10.1023/A:1012062710692.CrossRefGoogle Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748. doi: 10.1038/ncomms2783.CrossRefGoogle ScholarPubMed
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486:240242. doi: 10.1038/nature11123.CrossRefGoogle Scholar
Němec, M, Wacker, L, Gäggeler, H. 2010. Optimization of the graphitization process at Age-1. Radiocarbon 52(3):13801393. doi: 10.1017/S0033822200046464.CrossRefGoogle Scholar
Pilcher, JR. 1995. Biological considerations in the interpretation of stable isotope ratios in oak tree rings. Paläoklimaforschung:157161.Google Scholar
Raspopov, OM, Dergachev, VA, Zaitseva, GI, Ogurtsov, MG. 2013. Deep solar activity minima, sharp climate changes, and their impact on ancient civilizations. Geomagnetism and Aeronomy 53:917921. doi: 10.1134/S0016793213080227.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatteé, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50, 000 years cal BP. Radiocarbon 55(4):18691887. doi: 10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Rinn, F. 1996. Tsap V 3.6 Reference manual: computer program for tree-ring analysis and presentation. Heidelberg, Germany: Rinntech.Google Scholar
Rozanski, K. 1991. Consultants’ group meeting on 14C reference materials for radiocarbon laboratories. Vienna, Austria.Google Scholar
Schmitt, U, Jalkanen, R, Eckstein, D. 2004. Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fennica 38(2):167178. doi: 10.14214/sf.426; [accessed 2019 Jan 4].CrossRefGoogle Scholar
Shea, MA, Smart, DF. 1992. Recent and historical solar proton events. Radiocarbon 34(2):255262. doi: 10.1017/S0033822200013709.CrossRefGoogle Scholar
Sirocko, F, Brunck, H, Pfahl, S. 2012. Solar influence on winter severity in central Europe. Geophysical Research Letters 39. doi: 10.1029/2012GL052412; [accessed 2018 Aug 19].CrossRefGoogle Scholar
Skomarkova, MV, Vaganov, EA, Mund, M, Knohl, A, Linke, P, Boerner, A, Schulze, E-D. 2006. Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20:571586. doi: 10.1007/s00468-006-0072-4.CrossRefGoogle Scholar
Solanki, SK, Usoskin, IG, Kromer, B, Schüssler, M, Beer, J. 2004. Unusual activity of the Sun during recent decades compared to the previous 11, 000 years. Nature 431:10841087. doi: 10.1038/nature02995.CrossRefGoogle ScholarPubMed
Stuiver, M, Braziunas, TF. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3:289305. doi: 10.1177/095968369300300401.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25:329332. doi: 10.1029/97GL03694.CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259:713. doi: 10.1016/j.nimb.2007.01.138.CrossRefGoogle Scholar
Tegel, W, Vanmoerkerke, J, Büntgen, U. 2010. Updating historical tree-ring records for climate reconstruction. Quaternary Science Reviews 29:19571959. doi: 10.1016/j.quascirev.2010.05.018.CrossRefGoogle Scholar
Thiéblemont, R, Matthes, K, Omrani, N-E, Kodera, K, Hansen, F. 2015. Solar forcing synchronizes decadal North Atlantic climate variability. Nature Communications 6:8268. doi: 10.1038/ncomms9268.CrossRefGoogle ScholarPubMed
Usoskin, IG. 2017. A history of solar activity over millennia. Living Reviews in Solar Physics 14:3. doi: 10.1007/s41116-017-0006-9.CrossRefGoogle Scholar
Uusitalo, J, Arppe, L, Hackman, T, Helama, S, Kovaltsov, G, Mielikäinen, K, Mäkinen, H, Nöjd, P, Palonen, V, Usoskin, I, et al. 2018. Solar superstorm of AD 774 recorded subannually by Arctic tree rings. Nature Communications 9:3495. doi: 10.1038/s41467-018-05883-1.CrossRefGoogle ScholarPubMed
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Němec, M, Ruff, M, Suter, M, Synal, H-A, Vockenhuber, C. 2010a. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52(2):252262. doi: 10.1017/S0033822200045288.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, H-A. 2010b. BATS: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268:976979. doi: 10.1016/j.nimb.2009.10.078.CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010c. A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268:931934. doi: 10.1016/j.nimb.2009.10.067.CrossRefGoogle Scholar
Xu, X, Khosh, MS, Druffel-Rodriguez, KC, Trumbore, SE, Southon, JR. 2010. Is the consensus value of ANU sucrose (IAEA C-6) too high? Radiocarbon 52(3):866874. doi: 10.1017/S0033822200045951.CrossRefGoogle Scholar
Supplementary material: File

Friedrich et al. supplementary material

Friedrich et al. supplementary material 1

Download Friedrich et al. supplementary material(File)
File 27.4 KB