Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T01:56:48.227Z Has data issue: false hasContentIssue false

An Archaeological Mystery Revealed by Radiocarbon Dating of Cross-Flow Nanofiltrated Amino Acids Derived from Bone Collagen, Silk, and Hair: Case Study of the Bishops Baldwin I and Radbot II from Noyon-Tournai

Published online by Cambridge University Press:  09 February 2016

Mathieu Boudin*
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium Ghent University, Isotope Bioscience Laboratory – ISOFYS, Faculty of Bioscience Engineering, Coupure Links 653, B-9000 Ghent, Belgium
Pascal Boeckx
Affiliation:
Ghent University, Isotope Bioscience Laboratory – ISOFYS, Faculty of Bioscience Engineering, Coupure Links 653, B-9000 Ghent, Belgium
Peter Vandenabeele
Affiliation:
Ghent University, Department of Archaeology, Sint-Pietersnieuwstraat 35, B-9000 Ghent, Belgium
Mark van Strydonck
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels, Belgium
*
Corresponding author. Email: [email protected]; [email protected].

Abstract

Excavations in the cathedral of Tournai revealed two sepultures, which were identified by the excavators as those of bishops because of their special location in the cathedral. One burial was assigned to Baldwin I, who died in AD 1068, because (1) a ring with the inscription “BAL” was found and (2) a funeral stone with text was present on top of the grave mentioning the name Baldewinus. The second burial probably belongs to Radbot II, who was the successor of Baldwin I, and died in AD 1098. Both burials contained textiles (silk), the skeleton, a wooden pastoral staff, and human hair was still present on the skull of what was presumed to be Radbot II. All the protein-containing materials were degraded and/or contaminated. Standard sample pretreatment methods were not able to remove all the contaminants. Single and double cross-flow nanofiltration of the hydrolyzed protein-containing materials were performed. The sample quality for radiocarbon dating was improved and 14C data revealed interesting and surprising results. The 14C dates of the wooden pastoral staff and permeate femur confirm that the skeleton and tomb belong to bishop Baldwin I. The 14C dates of hair and permeate skull indicate that the skeleton may indeed belong to bishop Radbot II. The younger 14C dates of the wooden pastoral staff and silk samples indicate a postburial disturbance of the site burial during the 12th–13th century.

Type
Methodology: Generaland Bones
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17(4):431–51.Google Scholar
Bénazeth, D, Van Strydonck, M. 2006. In: Boud'hors, A, Gascou, J, Vaillancourt, D, editors. Cahiers de la Bibliothèque Copte 14. Paris: De Boccard. p 4565.Google Scholar
Benfer, RA, Typpo, JT, Graff, VB. 1978. Mineral analysis of ancient Peruvian hair. American Journal of Physical Anthropology 48(3):277–82.Google Scholar
Boudin, M, Boeckx, P, Vandenabeele, P, Mitschke, S, Van Strydonck, M. 2011. Monitoring the presence of humic substances in wool and silk by the use of nondestructive fluorescence spectroscopy: quality control for 14C dating of wool and silk. Radiocarbon 53(3):429–42.Google Scholar
Boudin, M, Boeckx, P, Vandenabeele, P, Van Strydonck, M. 2013. Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair samples via cross-flow nanofiltrated amino acids. Rapid Communications for Mass Spectrometry 27(18):2039–50.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.Google Scholar
Brulet, R. 2012a. In: Brulet, R, editor. La cathédrale Notre-Dame de Tournai: L'archéologie du site et des monuments anciens (Volume 1). Namur: Service public de Wallonie, Département du Patrimoine.Google Scholar
Brulet, R. 2012b. In: Brulet, R, editor. La cathédrale Notre-Dame de Tournai: L'archéologie du site et des monuments anciens (Volume 3). Namur: Service public de Wallonie, Département du Patrimoine. p 250–62.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneant, V, Pettitt, PB. 2001. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates Gorge. Radiocarbon 43(2A):453–60.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneant, V, Bartosiewic, L, Pettitt, PB. 2002. Problems of dating human bones from the Iron Gates. Antiquity 76(291):7785.Google Scholar
den Hartog, E. 2012. De kromstaf van Ename (Oudenaarde, prov. Oost-Vl?). Een pastoral gezagssymbool uit de 12de eeuw. Relicata 9:91148.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317(6040):806–9.Google Scholar
Deveseleer, J, editor. 1999. Saint Vincent de Soignies: Regards du XXe siècle sur sa vie et son culte (Les Cahiers du Chapitre 7). Soignies: Musée du Chapitre.Google Scholar
Deveseleer, J, editor. 2001. Reliques et châsses de la collégiale de Soignies: Objets, cultes et traditions (Les Cahiers du Chapitre 8). Soignies: Musée du Chapitre.Google Scholar
Ervynck, A, Boudin, M, Van den Brande, T, Van Strydonck, M. 2014. Dating human remains from the historical period in Belgium: diet changes and the impact of marine and freshwater reservoir effects. Radiocarbon, these proceedings.Google Scholar
Gillespie, R, Hedges, REM. 1983. Sample chemistry for the Oxford high energy mass spectrometer. Radiocarbon 25(2):771–4.Google Scholar
International Council on Monuments and Sites (ICOMOS). 2000. Tournai Cathedral n°1009. Annual Report ICOMOS. Paris: ICOMOS. p 5068.Google Scholar
Koros, WJ, Ma, YH, Shimidzu, T. 1996. Terminology for membranes and membrane processes. Pure and Applied Chemistry 68(7): 1479–89.Google Scholar
Lanting, JN, van der Plicht, J. 1996. Wat hebben Floris V, skelets Swifterbant S2 en visotters gemeen? Palaeohistoria 37/38:491520.Google Scholar
Lanting, JN, van der Plicht, J. 1998. Reservoir effects and apparent 14C-ages. The Journal of Irish Archaeology IX: 151–65.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.Google Scholar
Maillard, LC. 1913. Formation de matières humiques par action de polypeptides sur sucres. Comptes Rendus de l'Académie des Sciences 156:148–9.Google Scholar
Müldner, GH. 2009. Investigating medieval diet and society by stable isotope analysis of human bone. In: Gilchrist, R, Reynolds, A, editors. Reflections: 50 Years of Medieval Archaeology. Leeds: Maney. p 327–46.Google Scholar
Nadeau, M-J, Grootes, PM, Schliecher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
O'Connell, TC, Hedges, REM. 1999a. Investigations into the effect of diet on modern human hair isotopic values. American Journal of Physical Anthropology 108(4):409–25.Google Scholar
O'Connell, TC, Hedges, REM. 1999b. Isotopic comparison of hair and bone: archaeological analyses. Journal of Archaeological Science 26(6):661–5.Google Scholar
O'Connell, TC, Hedges, REM, Healey, MA, Simpson, AHRW. 2001. Isotopic comparison of hair, nail and bone: modern analyses. Journal of Archaeological Science 28(11):1247–55.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Shennan, S. 1988. Quantifying Archaeology. Edinburgh: Edinburgh University Press.Google Scholar
Simpson, AJ, Boersma, RE, Kingery, WL, Hicks, RP, Hayes, MHB. 1997. Applications of NMR spectroscopy for studies of the molecular compositions of humic substances. In: Hayes, MHB, Simpson, AJ, editors. Humic Substances, Peats and Sludges: Health and Environmental Aspects. Cambridge: The Royal Society of Chemistry. p 4663.Google Scholar
Stevenson, FJ. 1982. Genesis, composition, reactions. In: Stevenson, FJ, editor. Humus Chemistry. New York: Wiley-Interscience. p 1443.Google Scholar
Van Strydonck, M, van der Borg, K. 1990–1991. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bulletin of the Royal Institute for Cultural Heritage 23:228–34.Google Scholar
Van Strydonck, M, Ervynck, A, Vandenbruaene, M, Boudin, M. 2006. Relieken, echt of vals? Leuven: Davidsfonds.Google Scholar
Van Strydonck, M, Ervynck, A, Vandenbruaene, M, Boudin, M. 2009. Anthropology and 14C analysis of skeletal remains from relic shrines: an unexpected source of information for Medieval archaeology. Radiocarbon 51(2):569–77.Google Scholar